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A B S T R A C T  

In this paper a variant of Lusternik Schnirelmann category is presented 
which is denoted by Qcat(X). It is obtained by applying a base-point 
free version of Q = f~c~E~ fibrewise to the Ganea fibrations. We prove 
cat(X) >_ Qcat(X) >_ aeat(X) where acat(X) denotes Y. Rudyak's strict 
category weight. However, Qcat(X) approximates cat(X) better, be- 

cause, e.g., in the case of a rational space Qcat(X) = cat(X) and acat(X) 
equals the Toomer invariant. 

We show that Qcat(X x Y) <_ Qcat(X) + Qcat(Y). The invariant Qcat is 

designed to measure the failure of the formula cat(X x S r) = cat(X) + 1. 
In fact for 2-cell complexes Qcat(X) < cat(X) ** cat(X x S r) = cat(X) 
for some r > 1. 
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We note that  the paper  is written in the more general context of a functor 

A from the category of spaces to itself satisfying certain conditions; A = Q, 

~n~n SpOe or L I are just  particular cases. 

0. I n t r o d u c t i o n  

Let S (resp. S,)  be the category of simplicial sets (resp. pointed simplicial sets); 

we will also denote convenient categories of spaces by these symbols. The base 

point of X C $ ,  is always denoted by • C X. 

0 . 1 .  F I B R E W I S E  APPLICATION OF FUNCTORS AND LUSTERNIK-SCHNIRELMANN 

CATEGORY. Let A: S --+ S (or S, --+ S,)  be a functor together with a natural  

transformation t~: id --+ A as coaugmentation. If A: $ -+ $ is a coaugmented 

functor and X E S,,  then A(X) is canonically pointed by * --+ X --+ A(X), thus 

A defines a functor A': $ ,  -+ ,9,. Throughout this work we suppose that:  

- the map * --+ A(*) coming from the coaugmentation is a weak equivalence; 

- A preserves weak equivalences. 

Such a A is called a r e g u l a r  c o a u g m e n t e d  func to r .  

For any f E $ there exists a functorial decomposition f = pfo j f  such that  

jy is a cofibration and a weak equivalence and PI a fibration. We fix such a 

construction and by definition call PI the f i b r a t i o n  a s s o c i a t e d  to f .  For any 

point x in the target of f the fibre of pf over x is called t h e  h o m o t o p y  f ib re  

of  f ove r  x. If f E $ ,  the h o m o t o p y  f ib re  of  f indicates the homotopy fibre 

over *. 

By [DF96] (see Appendix A) a regular coaugmented functor A: S --+ $ admits 

an extension to a functor A from the category of spaces over a space to itself such 

that  there are natural  transformations 

~-(E) r~-(E) 
E , A(E) > A(E) 

B B , ~,(B) 

over id~ and tx(B) respectively. Moreover, for p: E --+ B, the homotopy fibre 

of A(E) --+ B over a point x is naturally equivalent to A(F), where F is the 

homotopy fibre of p over x. We remark that  the previous consideration about 

pointed versions for maps in the image of A works also with A. 
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Applying this construct ion to the Ganea fibrations we obtain  variants of 

Lusternik-Schnire lmann category. First recall t h e  G a n e a  c o n s t r u c t i o n  for 

a map 77: E -+ B in 8 , .  

Detlnition 1: Let q0: Go(E, 77) --+ B be the fibration associated to 7r and suppose 

the fibrations qi: Gi(E,77) --+ B have been constructed for i _< k - 1. Then  we 

define q~.: Gk_I(E, 77)UC(Fk_I) --+ B by q' "-- k l G k _ l ( E , T r )  q k - 1  and ' • - -  q k l C ( F k _ ~  ) = , 

where C(Fk-1) is the cone on the fibre Fk-1 of qk-1. Let qk: Gk(E, 77) -+ B 
be the fibration associated to q~. In the part icular  case 7r = ( ,  -+ B) we write 

qk: Gk(B) --+ B. 

We apply now the fibrewise construct ion to these fibrations (the dashed arrows 

correspond to homotopy  sections or liftings tha t  are described below): 

Fn(Z,  77) A(Fn(E, 77)) " FnX(S, 77) 

G n ( E ,  77) " A(Gn(E, 77)) > ,~(Gn(E, 77)) 
I I 8 ...... 

qn : ~r - f (qn  ) : a ......... .i P 

B B ' . A(B) 
,x(B) 

where F~(E, 77) is the homotopy  fibre of  A(qn). In  such a d iagram we may  

consider the existence of a homotopy  section T of qn, a homotopy  section a of 

~(qn), a homotopy  lifting s of tx(B) th rough  A(qn) or a homotopy  section p of 

A(qn). The existence of r is the Ganea definition of the normalized LS-category 

of 7r, catc(Tr), being less than  or equal to n. For the others we set: 

DeIinition 2: Let A: $ --+ S be a regular coaugmented functor  and 77: E --+ B in 

$ , .  Then:  

- t h e  G a n e a  A - c a t e g o r y  o f  77, Acata(77), is the least integer n (or oc) such 

that  A(qn) admits  a section a up to pointed homotopy;  

t h e  G a n e a  A~-ca t ego ry  o f  77, A~cata(Tr), is the least integer n (or oc) such 

tha t  there exists s: B --~ A(Gn(E,  77)) satisfying A(q~) 0 s -~ tx(B);  

- t h e  T o o m e r  A - i n v a r i a n t  o f  7r, e~ (Tr), is the least integer n (or oe) such 

tha t  A(q,,) admits  a section p up to pointed homotopy.  

In the part icular  case 7r = (* --+ B) we write Acat(B) := Acata(* --+ B), 

Abcat(B) :=  A~cata(* -+ B) and e~(B) = e~(* -+ B). 

As we will see below, this presentat ion unifies the following approximations of 

the Lusternik Schnirelmann category: 
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- Mcat  of a rational space [HL88] is a special case of Acata [SS99], 

- the strict category weight [Rud99], [Str00], IVan00] fits into the setting of 

A~catc, 

- the Toomer invariant introduced in [Too74] is equal to CM for M the abelian 

group completion of A -- Sp ~ ,  cf. Example 2. 

If  ~- is a section of qn we get a section of A(q~) by 

: =  T. 

In the same way, if a is a homotopy section of A(q~) the composite 

s := r x ( a n ( E ,  o 

is a lifting up to homotopy of ta(B) through A(qn). Tha t  is: 

cata(~r) >_ Acata(~r) >_ A~cata(~). 

With an extra hypothesis the existence of a lifting up to homotopy s implies the 

existence of a homotopical section of A(qn) (see the end of Section 1): 

PROPOSITION 1: Suppose that A is a regular coaugmented functor equipped with 

a natural transformation A 2 = A o A --+ A whose composition with A(~:~) is equal 

to the identity A -+ A 2 -~ A. Let s: B --+ A(Gn(E,7c)) such that )~(qn)OS "~ t~(B).  

Then there exists a homotopical section p: A(B) -+ A(Gn(E, 7r)) of  A(qn) and we 

have A~cata(~r) = e~(~). 

This applies in particular if A together with the coaugmentation and the trans- 

formation A 2 --+ A constitutes a triple (see Section 2). 

In Definition 2 the subscript a is chosen to make a distinction from another no- 

tion of category of a map due to Fox [Fox41], Berstein and Ganea [BG62] (see also 

Section 7 of [Jam78]) which admits also variants with a fibrewise construction. 

0.2. UNPOINTED VERSION OF POINTED FUNCTORS. In the fibrewise construc- 

tion A associated to a functor A: $ --+ S the basepoint free situation is essential 

and we first meet the problem that  the examples of functors that  we have in mind, 

such as the infinite symmetric product, need a basepoint. Therefore for any reg- 

ular coaugmented functor #: S, -+ S, we define a canonical functor #+: S --+ $ 

called b a s e p o i n t  f ree  f u n c t o r  a s s o c i a t e d  to  #: 

For Y C S we denote by Y +  C $,  the space Y with an extra point added 

and considered as the basepoint. Let * -+ *+ --+ #(*+)  be the map obtained 

from the canonical inclusion and the coaugmentation. Denote by *~ --+ #(*+)  



Vol. 131, 2002 FIBREWISE CONSTRUCTION 337 

the f i b r a t i o n  a s soc i a t ed  to  t h e  c o m p o s i t i o n  • --+ #(*+).  The functor Y ~-+ 

p+ (Y) is defined by the following pullback: 

i t+(z)  > i t ( z+)  

* .  > it(*+) 

By naturality the composite Y -+ Y+ -+ #(Y+)  -+ it(*+) factorizes as Y -+ • -+ 

p ( , + )  and we get a coaugmentation Y -+ it+(Y) from the universal property of 

pullbacks. Note that p+(Y) is n a t u r a l l y  equ iva l en t  to  t h e  h o m o t o p y  f ibre  

of  it(Y+) --+ p(*+) ove r  • C #(*+).  

We will say that a coaugmented functor #: S,  -+ $,  has  a b a s e p o i n t  f ree  

ve r s ion  if there exists a coaugmented functor A: $ --+ $ and a natural transfor- 

mation between A' and # compatible with the coaugmentations and which is a 

weak equivalence for any X c $, .  Sometimes, as in Proposition 4 below, #+ is a 

basepoint free version of #. 

Let E (resp. Q) be the reduced suspension (resp. the loop space) in S,.  In 

this paper we are mainly concerned with the functors M = Sp ~,  gtnE n, Q = 

lim_~ ~nEn and their basepoint free functors M +, pn  = (~nEn)+ ' Q+. We 

also consider the localization flmctor L f  [DF96]. The functors M and Q are 

particular cases of a more general construction, the infinite delooping associated 

to any S-algebra [Ada78], [EKMM97]. 

We will see that M + (resp. Q+) is a basepoint free version o f M  (resp. Q). For 

~nEn the situation is more complicated: we construct a basepoint free version 

Q~: S -+ S which is not homotopically equivalent to pn = (~t~E~)+. We have a 

general comparison theorem between all these invariants: 

THEOREM 1: Let 7r: E -+ B in S, and n > m. Then we have the following series 
of inequalities: 

catc(n) >_QmcatG(Tr) >_ Qncata(n) >_ pncatG(n) 

>_Qcatc(~) > McatG(u) >_ eM(~). 

The proof will be given after Example 3 of Section 2. 

For rational spaces all the invariants of Theorem 1, except the Toomer 

invariant, coincide. In fact, in this case, examples for the strict inequality 

Meat(B) > eM(B) can be found in [F6189, Th6or~me 12.4.1]. In the last section 

we will give examples of spaces which show that all the inequalities can be strict 



338 H. SCHEERER, D. STANLEY AND D. TANRI~ Isr. J. Math. 

except possibly Q~cata >_ P'~cata. The inequalities in Theorem 1 result from 

the existence of natural transformations between the related funetors. 

The functions pneata  and Qcata can be compared with stabilized variants of 

Lusternik Schnirelmann category studied in [Rud991, [Str00], [Vang8], IVan00]. 

Definition 3: Given 7r: E --+ B in $ , ,  let aicata(Tr) be the least integer n (or oe) 

such that  EiGn(E,  7r) --+ EiB  admits a right homotopy inverse. For simplicity 

we shall write acata for (T~cata. 

From the adjunction formula between ft i and E i it follows that aicata(Tr)= 

Q~eata(~r) and therefore, as a particular case of the inequality Acata(Tr) >_ 

A~cata(~r) from above, we obtain: 

PROPOSITION 2: Let (7r: E --+ B) E S. .  Then one has Qcata(~r) > acata(Tr) 
and Qicata(Tr) >> aicata(Tr). 

0.3 .  THE INVARIANTS AND CARTESIAN PRODUCTS. It was a question of Ganea 

[Gan71] called t h e  G a n e a  c o n j e c t u r e  whether the equality cat(Y x S ~) = 

cat(Y) + 1 holds for Y connected and r > 1. By a result of N. Iwase [Iwa98] 

this is not always true. It is true, however, that crcat(Y x S r) = acat(Y)  + 1 by 

[Rud99], [Van00]. For rational simply connected spaces Y, Z of finite type over 

the rationals the general formula cat(Y x Z) = cat(Y) + cat(Z) holds [FHL98] 

(cf. [Jes90] and [Hes91] for Z = ST). 

About our invariants, in particular about Qcat, we can state the following: 

THEOREM 2: Let Y, Z C $. .  Then for A = Q, pn,  Qn, M or for A a localization 

functor L f we have 

Acat(Y x Z) < Acat(Y) + Acat(Z). 

Moreover, the corresponding inequality holds also for )%cat. 

Remark: The equality Qcat(X x S ~') = Qcat(X)  + 1 is true if Qcat(X)  = 

acat(X) .  For then 

Qcat(X x S r) <_ Qcat(X)  + 1 = acat(X)  + 1 = acat (X  x S ~') 

and, by Proposition 2, 

Qcat(X x S r) > acat (X x S r) = Qcat(X)  + 1. 
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0.4. HOPF INVARIANTS. Finally we introduce the notion of Hopf invariants 

adapted to our situation and prove that  they determine if Acat grows when at- 

taching a cell. We also apply them to find examples where the invariants cat, 

Qncat, Qcat, Mcat, acat are different. 

Recall that  the counter-examples of Iwase [Iwa98] to the Ganea conjecture are 

complexes X = Y t2~ e p such that  the Hopf invariant of ~2 is not zero but some 

suspension of it is zero. This phenomenon is, by the definition of Qcat, ruled out 

for the corresponding Hopf invariant. Therefore we may state: 

PROBLEM 1: Does Qcat satisfy the analogue of the Ganea conjecture, i.e., for X 

connected and r > 1 does Qcat(X x S r) = Qcat(X) + 1 hold? 

Indeed, L. Vandembroucq [Van01] answered the question in the positive for 

finite complexes X. 

It  follows that  for finite connected CW-complexes X with Qcat(X) = cat(X) 

the Ganea conjecture holds for X. We would like to conjecture that  the reverse 

implication is also true: 

PROBLEM 2: Let X be a finite connected CW-complex. I f  Qcat(X) < cat(X) 

then there exists r >_ 1 such that cat(X x S ~) = cat(X). 

In our application of Hopf invariants we verify this for 2-cell complexes. We 

also construct an infinite CW-complex X such that  

Q e a t ( X )<  cat(X) and cat(X x S  ~ ) = c a t ( X ) +  l for a n y r _ > l .  

We may remark also that  this example allows a variation of Problem 2 as: Let 

X be a connected CW-complex. Then Q~cat(X) < cat(X) if, and only if, 

eat(X x S ~) = cat(X).  

We mention finally that,  under some restrictions on dimension and connec- 

tivity, a mapping version of Problem 2 is proved for rational spaces in [Sta98]. 

The paper is organized as follows. In Section 1 we recall some more properties 

of Dror Farjoun's fibrewise application of regular functors. We also study the 

basepoint free functor associated to a coaugmented functor $ ,  --+ S, and prove 

Propostion 1. In Section 2 we discuss the case of the functors Q, the abelian group 

completion M of Sp °° and f i ne  '~. In fact we defer the topological construction of 

a basepoint free version of ~2~E n to Appendix B. In Section 3 we prove Theorem 

2 and in Section 4 we present the theory of Hopf invariants for Acat and ;~cat. 
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1. Fibrewise application of  functors 

Isr. J. Math. 

1.1. CONSEQUENCES OF DROR FARJOUN'S CONSTRUCTION. Let A: S --+ S be 

a regular coaugmented functor. Let 7r: E --+ B be a fibration and let E -+ A(E) 

over idB be the construction of Dror Farjoun referred to in the introduction. For 

the convenience of the reader we will describe it in Appendix A. Directly from it 

we deduce: 

PROPERTY 1: Let 7c: E --+ B be a fibration with B connected. Let A1, A2: S --+ S 

be two regular coaugmented functors and £: A1 --+ A2 be a natural transformation 

compatible with the coaugmentations. Then £, induces a natural transformation 

over B,  E: A1 --~ A2- As a consequence we have 

Alcatc(~)  ~ A2cata(~). 

Moreover, if £ ( Y )  is a weak equivalence for any Y C S then £ ( E )  is a weak 

equivalence for any E and 

AlcatG(~) = A2catG(~). 

1.2. BASEPOINT FREE VERSION OF p: S ,  ---+ S , .  We  now study the relation 

between p and the basepoint free functor p+: S --+ $ defined in the introduction. 

The following two properties are immediate: 

PROPERTY 2: Let Pl, #2: $ ,  --+ S,  be two regular coaugmented functors. Let 

£: #1 -+ #2 be a natural transformation compatible with the coaugmentations. 

Then £ induces a natural  transformation £+:  p+ --~ p+. Moreover, i f  £ ( X )  is 

a weak equivalence for any X E S ,  then £+(Y)  is a weak equivalence for any 

Y C S .  

In the particular case of the functor #+: S -+ S, Proposition 7 of Appendix A 

implies: 

PROPERTY 3: Let #: S ,  --+ S,  be a regular coaugmented functor and #+: S -+ S 

the associated basepoint free functor. Let 7r: E -~ B in S ,  be a fibration with 

fibre F. Then the homotopy fibre of  p+(E) -~ B is equivalent to the homotopy 

fibre o f # ( F + )  -+ #(*+)  over *. 

If we start  from a basepoint free coaugmented functor A: S --+ S, we may 

compare A with the associated free construction of the associated functor A': S,  --~ 

S ,  : 
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PROPOSITION 3: Let A: $ --+ $ be a regular coaugmented functor. Then there 

exists a natural transformation A --+ (A') + compatible with the coaugmentations. 

We now state a sufficient condition for # and (#+)~ to be equivalent: 

Let #: S, -+ S, be a regular coaugmented functor with values in the category 

of grouplike spaces (we assume that  the base point of a grouplike space is its 

unit element). For X C $,  let * --+ #(X) be the composition • --+ p ( , )  --+ p(X) 

and denote by *,(x)  --+ #(X)  the fibration associated to • ~ #(X).  

Denote by X +  ~ X the canonical map in S, (taking + to the basepoint of 

X)  and by F the pullback of *,(x)  -* # (X)  and # ( X + )  -+ p.(X). The universal 

property of pullbacks gives a factorization of #(*+)  --+ # ( X + ) :  

* ,(x)  - p (X)  

Since the homotopy fibre F of p ( X + )  --+ it(X) over * is equivalent to /0 ,  we can 

view a l  as a map into F.  

PROPOSITION 4: Using the notation above suppose that crl: p (*+)  -+ F is a 

weak equivalence and rr0(p(X+)) --+ 7ro(p(X) ) is surjective. Then the composite 

#+(X) -+ #(X+) --+ p(X) is a weak equivalence. 

Proof of Proposition 3: In the following square, * --+ A(,) is a weak equivalence 

and a cofibration and ,~ -~ A(*+) a fibration. Therefore there exists the dashed 

arrow making the diagram commutative: 

, 

The result follows from the definition of (A~) + as a pullback and the existence of 

a factorization of the composite A(X) -+ A(X+) --~ A(*+) as A(X) --+ A(*) --~ 

m 
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Proof of Proposition 4: First we look at the different base points. The universal 

property of pullbacks gives a factorization of some canonical maps: 

*,  , ~ (*+)  

Therefore p+(X)  E S, and j(*) = *. Note also that the canonical map (X +  --+ 

X) E $ ,  induces (p (X+)  --+ p(X))  E G, with neutral element + (resp. , )  in 

p (X+ )  (resp. p(X)) .  

The map (# (X+)  ~ #(*+))  E G admits a section up to homotopy a = ~r: och 

which gives a homotopy equivalence 4: P(*+) x #+(X) --+ p (X+) ,  (c~,~) ~-+ 

a2(al(c~)). , -1  .j(/~). The result follows now from the five lemma applied to the 

following homotopy commutative diagram of homotopy fibrations: 

F o5 , , ( x + )  , , ( x )  

T T 
, ( . + )  > , ( . + )  x , + ( x )  , , + ( x )  

with #(*+)  -+ #(*+) x #+(X),  a ~-~ (a, *). | 

We end this section with the 

Proof of Proposition 1: This follows directly from the following diagram 

A2(Gn(E, 77))) > A(Gn(E, Tr)) 

The left triangle homotopy commutes because A(qn)os ~_ ~ (B) and A, preserving 

weak equivalences, preserves the homotopy relation. | 
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2. Speci f ic  c o n s t r u c t i o n s :  [t~E ~, ~ E  ~ ,  Sp ~ 

343 

Example 1: The functor Q = D ~ E  ~ satisfies the assumptions of Proposition 4. 

In fact let X E $ , .  The homotopy groups of Q(X) constitute a reduced ho- 

mology theory. From the cofibration sequence ( ,+ )  --+ (X+)  --+ X (which 

admits a retraction (X+)  -~ (*+)) we deduce that  the homotopy sequence of 

Q ( , + )  --+ Q(X+) -+ Q(X) decomposes into split short exact sequences. There- 

fore Q+ (X) --+ Q(X) is a homotopy equivalence. We also note that  this s tatement 

is a particular case of [BE74, Corollary 7.4]. 

Example 2: Let R be a commutative ring with unit 1. For X C S denote 

by R Q X the free R-module generated by X. If X c S,  we define MR(X) := 
R Co X / R  ® *. For R = Z we obtain in particular M(X). Proposition 4 ap- 

plies to MR and M+(X) is the simplicial set with n-simplices the finite linear 

combinations ~ riai of n-simplices of X with ~ ri = 1. This basepoint free 

version of MR(X) occurs for example in [BK72]. If  X E S, is connected M(X) 
coincides with the infinite symmetric product Sp *° (X). 

Remark that  Q+ and MR are examples of triples. 

Example 3: For the construction of a basepoint free version Qn of ~n~n:  

$ ,  -~ $ ,  we refer to Appendix B. We remark that  the basepoint free construction 

pn = (~n~n)+ is not homotopically equivalent to Qn. 

Proof of Theorem 1: Property 1 is the key point for the comparison between 

two invariants: we need only to exhibit natural  transformations compatible with 

the coaugmentations. 

• There is a natural  transformation Q --+ Mz compatible with the coaugmenta- 

tions (see, e.g., [CM95, 7.3]). An easy way to construct it is to use the combinato- 

rial model of Barra t t  and Eccles [BE74]. Thus we have Qcata(Tr) >_ Mzcata(Tr). 
• If  m _< n the natural transformation Qm __+ Qn in Top gives Qmcata(Tr) > 

Qncata(Tc); cf. Appendix B. 

• From Proposition 3 we get a natural transformation Qn __+ ((Qn),)+. By 

Appendix B there is a natural  transformation (Qn), _+ ~nEn; thus composing 

Qn ~ ((Qn),)+ __+ (~nEn)+ provides a natural  transformation Qn _+ pn. 

• The inequality pncata(7~) ~ Qcatc(re) comes from the natural  transforma- 

tion ~nEn -~ ~ E  ~ .  

• The existence of a homotopical section to M(q~) could be chosen as a defini- 

tion for Toomer 's  invariant. Therefore Mcat(X) >_ eM (X) is a direct consequence 

of Proposition 1. 
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• The remaining inequality catc(zr) >_ Qncatc(Tr) is obvious. I 

3. P r o d u c t  f o r m u l a e  

The proof of Theorem 2 will be based on the following result of [SS99]: Let 

A: S --+ S be a regular coaugmented functor. If there is a natural transformation 

A(Y) x A(Z) --+ A(Y x Z) which is compatible with the coaugmentations, then 

the product formula Aeat(Y × Z) < Acat(Y) + Acat(Z) holds. The corresponding 

formula for Abcat follows even more easily. 

PROPOSITION 5: Suppose that A: S --+ $ is coaugmented by t~: id --+ A. Assume 

that there are natural transformations A(Y) x Z -+ A(Y x Z) and m: A 2 -+ A 

which are compatible with the eoaugmentations. 

Then there is a natural transformation A(Y) x A(Z) -+ A(Y x Z). 

Proof: The transformation consists of the composition A(Y) × A(Z) --+ 

A(Y x A(Z)) --+ A2(Y x Z) --+ A(Y x Z). I 

Remark: If A is as in Proposition 1, then there exists m with m o t~(d(Y)) = 

id~(r) for Y E S. 

COROLLARY 1: Let It: $ ,  --+ S,  be coaugmented such that there exist natural 

transformations It(X) × X '  --+ It(X × X' )  and It2(X) --+ It(X) compatible with 

the coaugmentations. 

Then there is a natural transformation It+ (Y) x It+ ( Z) --+ It+ (Y  x Z) of functors 

S x S - - + S .  

Proof." Let ~(Y) = #(Y+)  for Y C S. Then it suffices to show that ~ satisfies 

the assumptions on A of Proposition 5. 

(a) ~ ( r )  × z = I t ( z+)  x z -+ I t (r+)  × ( z + )  -~ I t ( (v+)  × ( z + ) )  -+ 
It((Y × Z)+)  = ~(Y x Z). The last arrow is induced by the canonical map 

(v+) × (z+) -+ (v × z)+ .  

(b) ~2(y)  = It((i t(y+))+) __+ It(it(y+)) __+ It(y+) = ~(y ) .  The first arrow 

is induced by the map ( i t (Y+))+ ~ It(Y+) which is the identity on It(Y+) and 

maps + to the basepoint + E It(Y+). I 

Proof of Theorem 2: We need only to observe from Proposition 8 of Appendix 

B that the basepoint free versions of Q and ~nEn satisfy the assumptions of 

Proposition 5. 
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The combinatorial models F for f ~ E  ~ of [BE74] and F n for a n ~  n of [Smi89] 

are convenient too. It  has been shown directly in [BE74] that  F in particular 

satisfies the assumptions of Corollary 1. A close look at the combinatorial details 

shows that  this is also true for F n C F. Thus the functor pn  satisfies the 

conditions of Proposition 5. 

For ~t = ~-~n~n we can also argue topologically. The second transformation 

needed in Corollary 1 exists for # but  - - p e r h a p s - -  not the first one. However, we 

show that  ~ admits a natural  transformation g(Y) x Z --~ g (Y x Z) compatible 

with the coaugmentations. It  follows that  #+ (hence P~) is a functor as in 

Proposition 5. 

To give the required formula we write ~ n ( y + )  : sn  A ( } ~ - [ - )  = S n )4 ~" where 

x: S. × S -+ S.  is the halfsmash. Then we have 

~ n ( ( y  × Z)-I-) "= S n )4 (Y  × Z)  -= (S n )4 Y )  )4 Z. 

We define ~: f t~E~(Y+) × Z --+ ~ n ~ n ( ( y  × Z)-~-) by ¢~(w,z)(t) = [w(t),z] 

where w: S n -+ E n ( y + ) ,  t E S n, and [w(t), z] denotes the class of (w(t), z) in 

(S  n ~ Y) ~ Z .  

For the localization functor, L f, we observe [DF96, pages 21-23] the existence 

of a natural  transformation L f ( Y )  x Z -+ L I ( Y  x Z) which gives a natural  

transformation L f ( Y )  × L f ( Z )  --+ L I L f ( Y  × Z). The coaugmentation induces a 

weak equivalence L I -~ L I L y  and we deduce L f c a t ( Y  × Z) = L : L f c a t ( Y  × Z) <_ 

L fca t (Y)  + Lfcat (Z) .  | 

4. H o p f  invariants 

Let X E S. and c~: S r -+ X be a map with cofibre Y = X U~ e r + l .  

We will characterize the relationship between the different A LS-type invariants 

of X and Y in terms of a homotopy class associated to c~ and called a H o p f  

inva r i an t .  We use the presentation of [Iwa98]. For A = id this coincides with the 

Berstein Hilton definition [BH60] (see IVan98, Proposition 3.2.7] for a detailed 

proof). In this section we will make no distinction between maps and (pointed) 

homotopy classes of maps. 

4.1. DEFINITION AND PROPERTIES. Consider first the adjoint ct~: S r - 1  -"+ ~ X  

of a whose supension gives a homotopy class Ea~: S r --+ E f tX  into the first 

Ganea space associated to X. By composition with the maps nn"X" Ef tX  --+ 

Gn(X)  coming from the construction of the Ganea fibrations we have maps 

~n x o E ~ :  S ~" -+ G~(X).  We work with the absolute case and the situation 
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described in the introduction becomes: 

S r  

S ~ 

~XoEa~ 

Fn(x) 

'i~ 1 

• Gn(X)  

qX ~- 

• X  

. ~ ( a ~ ( x ) )  , ~ ( a ~ ( x ) )  

.( .............................. ) 

x . a (x)  ~x(x) 

Recal l  t h a t  bA(Gn(X)  ) : r -~(Vn(X)  ) o ty(G~(X)).  

Definition 4: (1) Suppose that ~(qnX): ~(Gn(X) )  -+ X admits a homotopical 

section a. Then t h e  H o p f - i n v a r i a n t  a s soc i a t ed  to  (a, A, a) is: 

~-~ta,x (OL ) :-~ ( t ~ ( G n ( X )  ) o Nx n o ~oL ~) - ((:r o oz) ~ 7rr(-~(Gn(X) ) ). 

(2) Suppose there exists s: X -+ A(Gn(X))  such that A(q x )  os  _~ t~(X). Then 

t h e  H o p f - i n v a r i a n t  a s soc i a t ed  t o  (s, A, a)  is: 

x x ~ )  (s o ~) • ~ ( A ( a ~ ( x ) ) ) .  H~,x(~) := ( t ~ ( G n ( X ) )  o n n o - 

Remark: Consider /3: S t ~ S r a coil-map (for instance, a suspension) and 

a: S r --+ X .  Directly from Definition 4 we have ?-/o,),(a o/~) = 7/oA(a ) o/3 and 

Ho,~(a o 9) = Ho,~(a) o/3. 

The element 7-/~,~(a) • 7rr(~(Gn(X))) lifts in the fibre as an element 

denoted by 7-/~,~(a) C ~r,.()~(F,~(X))) and there is no indeterminacy in this lifting 

because )~(Fn (X)) -+ ~(Gn (X)) induces an injection between homotopy groups. 
! Notice that  we are distinguishing between "/-/o,~ and 7-/o,~. We do this because 
! 

though 7-/~,~ always determines No,~, ~ ( G ~ ( X ) ) .  o ?-/~,id does not determine 

t~(Gn(X)) ,  o "]-/a,id. This turns out to be one source of examples where the 

invariants we study differ; cf. Corollary 2. 

We consider the classical Hopf invariant of Berstein-Hilton [BH60] as a par- 

ticular case of ?-/a,~ for A = id and use, in this case, the notation ?-/o (or Ha). If 

there is a unique homotopy class of section we shorten the notation in ?-/(or H). 

The LS-category of the skeleton of a non-contractible CW-complex is always 

less than or equal to the LS-category of the total space [Sta00]. This property 

can be extended to the setting of )~cat as follows: 
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THEOREM 3: Let  A: S -+ $ be a regular coaugmented functor preserving k- 

equivalences for any k > O. Let  X be a (k - 1)-connected CW-complex  and X (~) 

be its r-skeleton. We suppose r >_ k, (k >_ 2 and n > 1) or (k = 1 and n >_ 2). 

For any section cr of-A(qX): A ( G n ( X ) )  -+ X ,  n >_ 1, there exists a compat-  

ible section a~ o f -A(G, (X(~) ) )  -+ X (r). In other words the following diagram 

commutes:  

A (Gn(X(r ) ) )  > -A(Gn(X)) 

X (r) ~ X 

As a consequence, i f  X is s imply  connected and c a t ( X )  > 1 or X is connected 

and ca t (X )  >_ 2, we have Aca t (X  (~)) <_ Acat (X) ,  for any r >_ k. 

We show now that the Hopf invariant characterizes in a certain way the growth 

of the LS-category when a cell is attached to a CW-complex. The following 

theorem generalizes results of [BH60], [Iwa98], [Sta00] and [Van98]: 

THEOREM 4: Let  A: S -+ $ be a regular coaugmented functor and X be a 

connected space of  associated Ganea fibration x G n ( X )  -+ X .  Consider qn : 
c~: S ~ -+ X .  Denote  by Y -- X O~ e ~+1 the space X with a cell at tached 

along c~ and by p: X --+ Y the canonical inclusion. 

(1) f f  there is some homotopy  section a of  A(q X)  such that  "/-l~,x(a) = 0 then 

Acat(Y) ~ n. 

(2) We suppose n > 1 or X s imply  connected. I f  A preserves ( r + l )-equivalences, 

r > 1 and dim X ~_ r then: Acat(Y)  < n iff there exists a homotopy  section a o f  
- x A(q n ) such that  7-la,~(c~) = O. 

(3) Suppose that  A is a regular coaugmented functor equipped with a natural 

transformation A 2 = A o A ~ A whose composit ion with A(t;~) is equal to the 

ident i ty  A ~ A 2 ~ A. I f  there exists s: X -+ A ( G n ( X ) )  such that  A(qn X) o s 

t~ (X)  and Hs,~(~) = 0 then Abeat(~" ) ~ n. 

The hypothesis required on A in the statements (2) and (3) are satisfied by the 

functors Qn pn ,  Q, M -- Sp  °°. 

Suppose there exists a natural transformation £: A1 -~ A2 compatible with 

the coaugmentations between two regular coaugmented functors. If al  is a 

homotopical section o f -  x Al(q~ ) we define a homotopical section of Xe(q x )  by 

~2 := £(Gn(X))  o ~1 and we have ~ '  = £ ( G n ( X ) )  o 7-l' We may also 0"2 ~ 2  0"I I~I * 

define a lifting Sl from al and the Hopf invariant Hs~,A~ is obtained from 7-ff 
~I ~)~I 
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by composition with A1 (G. (X)) -+ A 1 (G.  (X)). These considerations and Theo- 

rem 4 give us directly a relationship between the different Hopf invariants asso- 

ciated to our functors: 

COROLLARY 2: Let  X be a s imply  connected space o f  LS-category n with a 

section "r: X --~ G n ( X )  to the Ganea fibration x S ~ qn" Let  a: -+ X and Y = 

X [-Ja er+l.  Denote  by ?'lr(a) e 7rr(Fn(X)) and 7-l~(a) e 7r,.(Gn(X)) the Hop[  

invariants associated to (T, a)  and by H u t  the Hurewicz homomorphism.  Then  

we have: 

• z ~ ( ~ )  = o ~ @ c a t ( Y )  <_ n; 

• EiT-/~(a) = 0 =a a~cat(Y) <_ n, 

• Hur 7-G(a) = 0 =~ M c a t ( Y )  <_ n; 

• H u r n ~ ( a )  = 0 ~ e ( Y )  <_ n. 

Coming back to the general situation we will prove that Theorem 4 implies: 

COROLLARY 3: Let  A be a regular coaugmented functor and (~: S r -+ X .  Then 

Aca t (X  Us e r+l) _< Acat (X)  + 1. 

The argument used in the proof of Corollary 3 does not work for A~cat. In 

fact, by [KV00], there is an example X with e ( X  Us e "+1) = e ( X )  + 2. 

We present now some particular results used in the proofs: 

LEMMA 1: C, onsider the situation of  Theorem 4 and let A(Gn(P)): A ( G n ( X ) )  --+ 

-A(G~(Y)) and A(G~(p)): A(G~(X)) --+ A ( G n ( Y ) )  be the maps induced  by p: X --+ 

Y .  

(i) I t -  x A(q~ ) admits  a homotopy  section ~ we have: 

~ ( c ~ ( p ) )  o ~ o ~ _~ - ( ~ ( c ~ ( p ) )  o W ~ ( ~ ) ) .  

(ii) I f  s exists we have: 

A(G~(p))  o s o  a = - (A(Gn(p))  o Hs,~((~)) . 

LEMMA 2: Let  r > k >_ 1. Let  B be a (h - 1)-connected CW-complex  o f  

dimension < r. Consider the cofibration V j S  r --+ B --+ C = B U3 e r+l. Le t  

k >_ 2 or (k = 1 and n > 2). Then, for n _> 1, the map t3 --~ C induces an 

(r + 1)-equivalence F n ( B )  --+ Fn(C)  between tile fibres o f  Ganea fibrations. 
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LEMMA3: Let  S ~ ~ > B o > C =  B U a e r + l  b e a c o f i b r a t i o n a n d p :  Y - + C  

be a map such that  7r~+1 (p) is surjective.  Le t  ~: B --+ Y be a map  such tha t  

qo o a ~- * and p o ~ ~_ p. Then  there exis ts  a: C --+ Y such tha t  ~ o p ~_ ~ and 

p o a  ~_ idc .  

The end of this section is devoted to proofs beginning with the proofs of the 

Lemmas. 

P r o o f  o f  L e m m a  1: By definition we have: 

X ( G n ( p )  ) 0 O" 00l = ~ ( G n ( p )  ) 0 [ - - ( ' ~ , ) ~ ( ~ ) )  ~- I ~ ( G n ( X ) )  0 l~Xn o ~_~0~]. 

The required equality follows from 

x v,a~ Y E~)poE~ 1~ A(G,~(p)) o ~-2(G,~(X)) o n,, o ~ ,~ t2(Gn(Y)) o ~,, o ,~ , .  

The verification of (ii) is similar. | 

P r o o f  of Lemma 2: Observe that  the fibre F n ( B )  (resp. F,~(C)) having the 

homotopy type of the iterated join * n + l ~ B  (resp. *n+lf~C) implies that  it is 

((n + 1)k-2)-connected.  With the assumptions on k and n, F~ (B) and F~ (C) are 

simply connected. A homology argument shows that  the induced map Fn (B) --+ 

Fn(C)  is an (nk  + r - 1)-equivalence and thus an (r + 1)-equivalence. I 

P r o o f  o f  L e m m a  3: The map p induces a morphism between the following two 

long exact sequences coming from the eofibration S r -+ B --+ C: 

> IS Y] > [c ,  . [B, Y] > 

> IS C] . [C, C] > [B, C] > 

From ~ o a ~- * we deduce the existence of ~b: C -~ Y such that  ~b o p ~_ p. The 

elements po~/, and iclc of [C, C] satisfy po~bop ~_ idop.  By a theorem of D. Puppe 

[Hi167, Theorem 15.4] there exists ~' G [S r+l,  C] such that  (p o ~)~' ~_ i d c  where 

(p o ¢)~' denotes the cooperation of ~' on p o ¢ induced by the eofibration. 

By hypothesis there exists ~ C [S "+1, Y] such that  ~/_~ po~. Set ~r = ~/,~. Then 

we have p o a = p o (~b)~ _~ (p o ¢)P°~ ~_ idc .  | 

P r o o f  o f  Theorem 3: Denote by it: X (r) --+ X and ~,. '~" X (r- l)  -+ X (~) the 

canonical inclusions and by x X(~) qn,~: G n ( X ( r ) )  --~ the Ganea fibration. Let a 
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be any section o f -  x A(q n ). The  m a p  i~ induces a morph i sm of fibrations between 
- -  X - -  X )~(qn,~) and A(q n ) which is an r-equivalence between the bases and an (r + 1)- 

equivalence between the fibres (by L e m m a  2 and the hypothesis  on A). Also the 

Ganea  fibrations split after looping. So with the homotopy  long exact  sequences 

we deduce tha t  A(i~,) is an r-equivalence, Therefore  there exists ~ such tha t  in 

the following d iagram 

X(i.) 
~ ( a . ( x ( r ) ) )  > -X(a.(x)) 

N ( q n , . )  ~ N ( q  n ) a 

X (~'-1) ) X (r) ~ X it i~ 

"~ "~ By L e m m a  3 applied to the cofi- A(ir) o Y ~ o" o ir and ~ ( q X )  o ~ o  ~r ~ ~" 

bra t ion  VS r -1  --+ X ( r - l )  -+ X (~) we can choose an element ~t C [VS~,X (r)] 

such tha t  (A(qn,~)- x o ~)~' ~_ id. Now, ~r~(A(qX~)) being surjective, we can choose 

E [VS~ ,A(Gn(X(~) ) ) ]  with rr~(A(qXr))(~) = ~'. Hence, 

- x ~ ~_ (A(qn,~) o y)~ ~_ id. )~(qn,~) o - x ' 

' ofA(qXr) s u c h t h a t -  " ' "' " " We may  homotope  ~ to a section ~r A(zr)°~r°~r = a°~r°Zr" 
We can therefore find r / '  E [VS~,-A(Gn(X))]  with (A(i~) o a~r)n" ~_ ~ o Jr. From 

- A ( % X ) o A ( i r ) O ~ A ( q n ) o a o i  - x 

- x X ( i ~ ) o ~ , ~ .  we deduce tha t  ~(qX) o r / '  acts  tr ivially on A(q~ ) o ' Then  the el- 
t 

ement n' : =  n"  - ~ o N(qX) o n" ~ [vS", A(Fn(X))]  satisfes  (N(#)  o ~f.)n _~ 
t! 

(A(i~) o a~) ~ "~ cr o it .  Let ~/ E [VS~,A(F~(X(~) ) ) ]  be an element which is 

m a p p e d  to r / b y  the m a p  induced by A(Fn(XO' ) ) )  --+ A ( F , ( X ) ) ;  set a~ := (a~)n. 

Then  a~ is still a section o f -  x A(qn,~) with A(ir) o o-,. __ cr o i~. | 

P r o o f  o f  T h e o r e m  4: Suppose t ha t  ~(qX) admi t s  a section or. By appl icat ion of 

L e m m a  1 (i) we get a commuta t ive  d iagram (up to sign): 

~ ( G n ( X ) )  

S r  r 

Y 

~ )) 

-X( Gn(Y) ) 
~(an(p))oo l~(q ~) 

Y 



Vol. 131, 2002 FIBREWISE CONSTRUCTION 351 

1) If 7-/~,~ --~ * we apply Lemma 3 to construct a map a': Y --9 -~(Gn(Y))  

such that  -~(Gn(p)) o a ~- a'  o p and X(q~') o or' _ i dy .  By definition we have 

~cat(Y) <_ n. 

2) Let a': Y ~ X(G~(Y)) be a section of X(qnY). By Theorem 3 there exists a 

section a of X(qn x)  such that a 'o  p _~ X(G~ (p))o a. From the diagram above we de- 

duce immediately that X(G, (p))oT/',~ ~_ . .  This implies that  A(Fn(p) )o~o ,~  ~- * 

by injectivity of 7rr(A(F,~(Y))) --+ 7r~(X(Gn(Y))) and that 7-/o,~ _~ • by Lemma 2 

and the hypothesis on A. 

3) Set & := t~(X) o a: S ~ --+ A(X) and ~ := s o a: S r --+/~(Gn(X)) .  Note that 

A(qn X) o G = & and, because of H~,~(a) = O, ~ ~_ t ~ ( G n ( X ) )  o n~ o Ea~. From 

naturality of l~ we have A(p) o 5 __ , and we deduce from Lemma 1 (ii) that 

)~(Gn(p)) o -~ ~_ , .  The universal property of pushouts and, for the right bot tom 

square, [Van00, Proposition 2.5] give a homotopy commutative diagram (without 

the dashed arrow): 

S r ~ > X > X Ua e r + l  Y 

s r  a , A ( X )  " /~(X) U~ e r + l  , ~(}~) 

X(qn x ) Cln ? sn A(qn Y ) 

~r > /~(Gn(.y)) > . ~ ( e n ( . y ) )  u~erA-1 > / ~ ( a n ( Y )  ) 

where A(Gn(X)) --+ A ( G n ( X ) ) U ~ - e  ~+1 --+ A(Gn(Y)) is homotopic to A(G~(p)) 

and A(X) --+ A(X) U~ e r+l -+ A(Y) is homotopic to A(p). 

From the hypothesis on A and Proposition 1 one has a homotopical section 
)t x ~ to (q~); a look at its construction gives ~ o (~ _~ ~. Denote by 8n and ~ 

the maps induced by ~ and A(qX) between the cofibres. The map ~ -- 0n o s~ 

induced by )~(qX) o ~ ~_ id is a homotopy equivalence [Qui67, Section 1.3]. By 

composing ~ with ~-1 we get a homotopical section g~ of qn. The required 

homotopy lifting of Y -+ A(Y) through A(q~') is the following composite: 

X U a e  r + l  ) A ( X )  U& e r+ l  :" ) ~ ( G n ( X ) ) U - ~ e  r+l  ~ , ~ ( G n ( Y ) ) .  I 

P r o o f  o f  Corollary 3: The triviality of the induced map F n ( Y )  ~ F n + I ( Y )  

implies the triviality of A(Fn(Y)) --+ A(Fn+I(Y)) and the image of the Hopf 

invariant ~o,~(~) in n.(A(Fn+I(Y))) is zero. As in the beginning of the proof of 
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Theorem 4 we construct  a dashed arrow making  commuta t ive  

x > X(an+,(Y))  

I "1 '+ 
........ X(q ~) 

. . .  

y y 

In other  words Acat(Y) <_ n + 1. | 

4.2. EXAMPLES. We come back to the chain of inequalities of Theo rem 1 and 

exhibit  examples  of spaces for which a str ict  inequali ty occurs (except for p n  and 

Qn). For this we will apply  Corollary 2. 

Example 4: We use the nota t ion  and results of [Tod62, Proposi t ion  13.9 page 

179]. The  compos i te /~  := c~1(3) o a l (2p) :  S 4p-3 ~ S 2p --} S 3 is a genera tor  of 

71-4p_3(S 3) : Zp  such tha t  E/~ ~ * and E2/3 -~ *. Denote  by w: S 4 --+ S 3 V S 2 

the Whi tehead  bracket  of the classes S 3 and S 2 and by 3, := w o E/3: S 4p-2 -+ 

S 4 --+ S 3 V S 2. Set X = (S 3 V S 2) [3~ e 4p-1. Then  we claim Qlca t (X)  = 1 and 

cat(X)  = 2 (cf. also [Sta98] for a different proof  of cat(X)  -- 2). 

The  Hopf  invariant  of 3' satisfies ~ ( 7 )  = ?-/(w o E/3) = 7-/(w) o E/~. Therefore  

E3/(7)  ~- * and Qlca t (X)  = 1 by Corol lary 2. We are now reduced to proving 

t ha t  7-/(7) is not trivial.  Denote  by f~ the adjoint  of  a m a p  f and observe t ha t  

~-/(7) ~ = 3/(w)~ o ~. The  non-tr ivial i ty  of 7-/(7) is a consequence of the following 

lemma.  I t  is certainly well known but  we cannot  find it in the l i terature.  

LEMMA 4: Let i , j  > 2. Let wi,j: S ~+j-1 --+ S i V S j be the Whitehead bracket 

of the canonical inclusions ~i: S ~ ¢_~ S i V S j, ?]J: S j ~ S i V S j . Denote by Fi,j 

the homotopy fibre of the first Ganea fibration associated to S i v SJ. The Hopf 

invariant associated to wi,j has for adjoint a map ?-l(wi,j)~: S i+j-2 -+ 12Fi,j. 

Then there exists a map ~: ~Fi,j -+ ~ S  i+j-1 such that the adjoint of 

o 7-l(wi,j) ~ is a map of degree + l :  S i+j-1 -+ S i+j-1. 

Proof: By the Hi l ton-Milnor  theorem [Whi78, page 515]: 

~ ( S  i V S j )  "~ ~ S  i × ~ S  j x ~ S  i + j - 1  × . . . .  

Recall t ha t  w~,j is constructed using the c o m m u t a t o r  of S i -  1 _+ f~S i __+ f~( S i y  Sj  ) 

and S j -1  --+ ftSJ --~ ~t(S i V SJ); the extension of w[,j: S i+j-2 --+ f~(S i V S j) to 

~ S  i+j-2 is the inclusion ~ S  ~+j-1 --+ ~ (S  i V S j) in the above decomposi t ion.  

Note  t ha t  there is one homotopy  section of Ef~(SiVS j) --+ S i V S  j up to homotopy.  
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It  follows tha t  there is a map p: ~Fi,j --~ ~ S  i + j - 1  with the adjoint o f ~ o ~ ( w i , j )  ~ 
a map  of degree +1:  S i+j-1 "-+ S i+j-1. | 

Example 5: Let /3: S" --+ S 3 such tha t  E2nfl ~ • and E2n+l~ ~- * [Gra84, 

Theorem 12] or [Sta00, Corollary 9.2]. Denote by w: S 4 --+ S 3 V S  2 the Whi tehead 

bracket of the classes S z and S 2 and let 7 :=  w o E~. Set X = (S 3 V S 2) t2~ e "+2. 

The method  used in Example  4 gives Q2ncat(X) = 1 and Q2n- lca t (X)  = 2. 

The existence of ~: S" --+ S 4 such tha t  E 2 ~ - l ~  ~ ,  and E2n~ ~- * allows with 

the same process the construct ion of a space X = (S 3 V S 3) U~ e "+2 such tha t  

Q2n- lea t (X)  = 1 and Q2n-%at (X)  = 2. 

We remark tha t  the examples X = Qv, P > 2, of N. Iwase [Iwa98] satisfy 

2 = cat(X)  = Qlca t (X)  > Q2cat(X) = 1. As for X = Q2 of [Iwa98], it is such 

tha t  2 = cat(X)  > Qlca t (X)  = 1. 

Example 6: For any n > 1 we denote by X ( n )  a CW-complex  which satisfies, 

as in Example  5, Q2n- lca t (X(n) )  = 1, Q2n-2cat(X(n))  = 2 (by convention: 

Q°cat = cat). Set Y = v n > l X ( n )  and observe tha t  Y (resp. Y × S r) dominates  

X ( n )  (resp. X ( n )  × Sr). We deduce from Corollary 2 and from [Iwa97] tha t  Y is 

an infinite CW-complex such tha t  Qcat(Y)  = 1, cat(Y) = 2 and cat(Y × S") = 

cat(Y) + 1 for any r _> 1. This justifies the restriction to a finite complex in 

Problem 2. 

Example 7: Denote by a1(3) E ff2p(S 3) a generator of the p-component  and 

by w: S 4 --+ S 2 V S 3 the Whitehead bracket. We deduce from Lemma 4 tha t  

QT-l(w o Ea l (3 ) )  ~ * and HurT-/(w o E a l (3 ) )  ~- *. Therefore the space X = 

(S 2 V S 3) U w o ~ ( 3 )  e 2p+2 satisfies Qeat(X)  = 2 and Mcat (X )  = 1. 

We address now the relation between acat and Qcat. 

Example 8: (The Lemaire-Sigrist example revisited.) Denote by w: S 5 -+ CP 2 

the a t taching map of the top cell o f C P  3 and by 7: S 6 --+ Cp2 VS 2 the Whi tehead 

bracket of w and S 2. Set Z = (CP 2 V S 2) U~ e 7. We claim tha t  Qcat(Z) = 3 and 

c~cat(Z) = alcat (Z)  = e(Z) = 2. 

Observe tha t  the rationalized space Z0 satisfies cat(Zo) = Qcat(Zo) = 3 and 

acat(Zo) = e(Zo) = 2, [LS81]. We deduce tha t  3 > cat(Z) > Qcat(Z) > 

Qcat( Zo) = 3. 

Consider the first Ganea space G I ( X )  associated to X :=  CP 2 V S ~. From 

the decomposi t ion f t (CP 2) ~_ S 1 × ~($5) ,  f rom B. Gray ' s  formula [Gra71], and 

s tandard  properties of E and ~ we see tha t  G I ( X )  is a wedge of spheres. Among  
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them we have S~1 ) corresponding to a generator of Ir2(CP 2) = Z, S 5 correspond- 

ing to a generator of zrs(CP 2) = Z and S 2. So we have a homotopy equivalence 

G I ( X )  -~ 8~1 ) VS 5 V 8  2 VViS hi. 

Let ~1: S~1) ~ GI (X) ,  ~: S 2 -+ GI (X)  and ts: S s -~ GI(X)  be the canonical 

inclusions. Let 7]: S 3 e S 2 be the Hopf map. Then qX o t 1 0  ?7 is nullhomotopic 

and hence tl o ~/ is killed by the map G I ( X )  --+ G2(X).  Hence we can find a 

section X --+ G2(X).  By G I ( X )  --+ Gt(Z)  the homotopy class of [t5, t] is mapped 

to an element ~ of kernel(zc,(qZ)). Therefore ~ will be killed by G I ( X )  -+ G2(Z). 

Since E 7 and E~ are both nullhomotopic, we can find a section E Z  --> EG2(Z),  

i.e., alcat (Z)  < 2. 

Since 2 = alcat(Zo) < a lcat (Z)  we get that  alcat (Z)  = 2. 

Remark: We note that  the notion of n-LS-fibration [ST97] does not allow an 

efficient use of Hopf invariants. For instance, the fact that  ids3: S 3 -~ S 3 is a 

1-LS-fibration implies that  a 1-LS fibration cannot bring a characterization of 

the category of S 3 Ua e k. 

PROPOSITION 6: For any space with two cells Problem 2 has a positive answer. 

Proof'. Let X = S n [.J~ e p. We may assume cat(X)  > 1. If cat(X) = 1, then 

both statements are false. For cat(X) = 2 we refer to a result of [Iwa97]: 

if X = S n U~ e p then cat (X × S r) < cat(X)  iff ErT/(~) = 0. II 

Appendix A. Dror Farjoun's construction 

I n  this paragraph we recall a construction from [DF96, Chapter  1.F.2]. Let 

A: $ -+ $ be a regular coaugmented fimctor and ~r: E -+ B in $ a fibration. We 

consider the s i m p l e x  c a t e g o r y  AB defined by: 

its objects are pairs (A[n], a), a C Bn; 

- a morphism a: (A[n], a) -+ (A[m], v) is a simplicial map a: A[n] -+ A[m] 

such that  f~oa = fa where fa: A[n] -+ B is the characteristic map of a. 

Denote by /~ :  AB -+ S the forgetful functor determined by (A[n], c~) ~-~ A[n] 

and let/~: AB -+ $ be the functor defined by the following pullback: 

1 1 
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The projection/)(A[n], a) -~ A[n] defines a natural transformation/) -+/~. The 
homotopy colimits (in S) of the functors/), Ao/),/~ and AoE give a commutative 

diagram 

hocol im A o E < hocol im E ~ E 

hocol im A o [~ < hocol im B , B 

The functor A is constructed with a homotopy pullback-pushout operation: P is 

the homotopy pullback (hpb) and A(E) the homotopy pushout (hpo) defined in 
the following diagram: 

hocol im E ~ E 

[ hpo 

Y 
hocol im A o E < P ~ A(E)  

hocol im A o B < hocol im [~ ~ B 

This induces a factorization E --+ A(E) --+ B of 7r. All diagrams 

T /  ~ - 

are homotopy pul!backs. Hence by [Pup74] this implies: 

PROPOSITION 7 ([DF96, Chapter 1, Theorem F.3]): For b E B let  F be the fibre 

o f  7r over b and -ff the h o m o t o p y  fibre o f  A (E)  --~ B over b. Then tile induced 

map  F -+ F is natural ly  equivalent to tile coaugmentat ion F -+ A(F). 

Appendix B. Unpointed version of ~ n ~ n  

We now construct an unpointed version Qn: S -+ S of f~n~n: S. --+ S. where $ 

(resp. S.) is the convenient category of compactly generated (resp. well pointed 

compactly generated) spaces. For that we recall first the notion of unpointed 
suspension: 
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Definition 5: Let I = [0, 1]. The u n r e d u c e d  suspens ion  of Y E $ is ~(Y) := 

( Y  × I ) / ~ ,  where (y, 0) ~ (y', 0) and (y, 1) ~ (y', 1) for any ~Y' y' E Y_By induc- 

tion we define the n - u n r e d u e e d  suspens ion  of Y E S by En(y)  = E E n - l ( y ) .  

We will number the coordinates from right to left; i.e., an element of E'~(Y) is 

an equivalence class denoted by [t,~,..., tl, y]. Observe that we have a canonical 

map jn: OI n --+ En(y) ,  ( t n , . . . , t l )  ~ [tn . . . .  , t l ,y]  (y arbitrary). 

Definition 6: Given Y E $ we define Q~(Y)  as the set of maps w: I n -+ En(y)  

such that  wlo~ = jn.  The map c: Y --+ Q~(Y) ,  y ~-+ c(y), c(y)(t,~ . . . .  , t l )  = 

[t~ . . . . .  tl ,  y] is a coaugmentation. 

There are bonding maps b~: Q~ --+ Qn+l compatible with the coaugmentations 

given by bn(w)(t~+l, . . .  , t l )  = [ tn+l,w(t~, . . .  ,tl)] for w E Qn(y ) .  

Set Q(Y)  :-- limQ~(Y). 
.-4 

Note that for X E $.  the canonical map En(X) --+ Eu(X) (where En(x )  is the 

reduced suspension) is a relative homeomorphism (En(X), En(*)) -+ (En(X), *) 

and that En(*) is contractible. Moreover, En(X) --+ En(x )  induces a map 
Qn(.y) + ~n~n(x). 

PROPOSITION 8: (1) The canonical map Q n ( x )  -+ f lnEn(x)  is a homotopy 

equivalence. 

(2) For Y, Z E $ there is a canonical map Q n ( y )  x Z --+ Q n ( y  x Z) compatible 

with the coaugmentations. 

(3) There is a natural transformation m: QnQn __+ Qn such that Qn together 

with c and m is a triple. 

Proof: (1) Note that for all w E Q n ( x )  the restriction ofw to the boundary OI n 

is equal to the restriction to OI n of in ~ ~n( . )  __+ ~ n ( X ) .  Thus dividing OI n+l 

in two halves along an equator OI n we obtain an element in f~nEn(X) by w on 

one half and the composite I n --+ E~(*) --+ En(X) on the other half. This gives 

an equivalence Qn(X)  --+ ~nE~(X).  Composing this map with ~nE~(X) -+ 

~n,~,n(x) w e  obtain the announced equivalence. Note that it is compatible with 

the bonding maps. 

(2) We define r/: Q n ( y )  × Z --+ Q n ( Y  x Z)  as follows. For w E Q n ( y )  

write w ( t n , . . . ,  t~) = [in . . . . .  tl ,  9]; then ~(w, z ) ( t n , . . . ,  t l)  = [[~ . . . .  , t'l, (9, z)]. 
This definition does not depend on the choice of the representative in the class 

w ( t n , . . . ,  t l)  (because WlOi~ is the fixed canonical map jn). One checks immedi- 

ately that  the map is compatible with the coaugmentations. 
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(3) We define m: Q~Q~(Y)  --+ Q~(Y)  by the following device. Given w: I n --+ 

~,nQn(y)  write as above a;(tn . . . . .  t l )  = [ t n  . . . . .  ~l,&] with 5; • Q n ( y ) .  Then  

set m ( w ) ( t ~ , . . . , t l )  = & ( t n , . . . , t l ) .  As above this definition does not depend 

on the choice of representat ive I f 'n , - - . ,  t l ,  &]. A calculat ion shows tha t  we have 

obta ined a triple. 1 
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