FIBREWISE CONSTRUCTION APPLIED TO LUSTERNIK-SCHNIRELMANN CATEGORY

BY

HANS SCHEERER

Mathematisches Institut, Freie Universitiit Berlin Arnimallee 1-3, 14185 Berlin, Germany e-mail: scheerer@math.fu-berlin.de

AND

DONALD STANLEY

Département de Mathematiques, UMR 8524, Université de Lille 1 59655 Villeneuve d 'Ascq Cedex, France and

Mathematisches Institut, Freie Universitiit Berlin ArnimaUee 1-3, 14185 Berlin, Germany e-mail: Don.Stanley@agat.univ-lillel.fr

AND

DANIEL TANRÉ

Département de Mathematiques, UMR 8524, Université de Lille 1 59655 Villeneuve d 'Ascq Cedex, France e-mail: Daniel. Tanre@agat.univ-lillel.fr

ABSTRACT

In this paper a variant of Lusternik Schnirelmann category is presented which is denoted by $Qcat(X)$. It is obtained by applying a base-point free version of $Q = \Omega^{\infty} \Sigma^{\infty}$ fibrewise to the Ganea fibrations. We prove $cat(X) \geq Qcat(X) \geq oct(X)$ where $\sigma cat(X)$ denotes Y. Rudyak's strict category weight. However, $Qcat(X)$ approximates $cat(X)$ better, because, e.g., in the case of a rational space $Qcat(X) = cat(X)$ and $\sigma cat(X)$ equals the Toomer invariant.

We show that $Qcat(X \times Y) \leq Qcat(X) + Qcat(Y)$. The invariant *Qcat* is designed to measure the failure of the formula $cat(X \times S^r) = cat(X) + 1$. In fact for 2-cell complexes $Qcat(X) < cat(X) \Leftrightarrow cat(X \times S^r) = cat(X)$ for some $r \geq 1$.

Received November 2, 2000 and in revised form August 17, 2001

We note that the paper is written in the more general context of a functor λ from the category of spaces to itself satisfying certain conditions; $\lambda = Q$, $\Omega^n \Sigma^n$, Sp^{∞} or L_f are just particular cases.

0. Introduction

Let S (resp. S_{\star}) be the category of simplicial sets (resp. pointed simplicial sets); we will also denote convenient categories of spaces by these symbols. The base point of $X \in \mathcal{S}_*$ is always denoted by $* \in X$.

0.1. FIBREWISE APPLICATION OF FUNCTORS AND LUSTERNIK-SCHNIRELMANN CATEGORY. Let $\lambda: \mathcal{S} \to \mathcal{S}$ (or $\mathcal{S}_* \to \mathcal{S}_*$) be a functor together with a natural transformation t_{λ} : id $\rightarrow \lambda$ as coaugmentation. If $\lambda: \mathcal{S} \rightarrow \mathcal{S}$ is a coaugmented functor and $X \in \mathcal{S}_*$, then $\lambda(X)$ is canonically pointed by $* \to X \to \lambda(X)$, thus λ defines a functor $\lambda' : \mathcal{S}_* \to \mathcal{S}_*$. Throughout this work we suppose that:

- the map $* \rightarrow \lambda(*)$ coming from the coaugmentation is a weak equivalence;

 $-\lambda$ preserves weak equivalences.

Such a λ is called a regular coaugmented functor.

For any $f \in \mathcal{S}$ there exists a functorial decomposition $f = p_f \circ j_f$ such that j_f is a cofibration and a weak equivalence and p_f a fibration. We fix such a construction and by definition call p_f the fibration associated to f. For any point x in the target of f the fibre of p_f over x is called the homotopy fibre of f over x. If $f \in S_*$ the homotopy fibre of f indicates the homotopy fibre over *.

By [DF96] (see Appendix A) a regular coaugmented functor $\lambda: \mathcal{S} \to \mathcal{S}$ admits an extension to a functor $\overline{\lambda}$ from the category of spaces over a space to itself such that there are natural transformations

over id_B and $\iota_\lambda(B)$ respectively. Moreover, for $p: E \to B$, the homotopy fibre of $\overline{\lambda}(E) \rightarrow B$ over a point x is naturally equivalent to $\lambda(F)$, where F is the homotopy fibre of p over x . We remark that the previous consideration about pointed versions for maps in the image of λ works also with λ .

Applying this construction to the Ganea fibrations we obtain variants of Lusternik-Schnirelmann category. First recall the Ganea construction for a map $\pi: E \to B$ in S_* .

Definition 1: Let $q_0: G_0(E, \pi) \to B$ be the fibration associated to π and suppose the fibrations $q_i: G_i(E,\pi) \to B$ have been constructed for $i \leq k-1$. Then we define $q'_{k}: G_{k-1}(E, \pi) \cup C(F_{k-1}) \to B$ by $q'_{k|G_{k-1}(E, \pi)} := q_{k-1}$ and $q'_{k|C(F_{k-1})} = *$ where $C(F_{k-1})$ is the cone on the fibre F_{k-1} of q_{k-1} . Let $q_k: G_k(E, \pi) \to B$ be the fibration associated to q'_{k} . In the particular case $\pi = (* \rightarrow B)$ we write $q_k: G_k(B) \to B.$

We apply now the fibrewise construction to these fibrations (the dashed arrows correspond to homotopy sections or liftings that are described below):

where $F_n^{\lambda}(E,\pi)$ is the homotopy fibre of $\lambda(q_n)$. In such a diagram we may consider the existence of a homotopy section τ of q_n , a homotopy section σ of $\lambda(q_n)$, a homotopy lifting s of $\iota_\lambda(B)$ through $\lambda(q_n)$ or a homotopy section ρ of $\lambda(q_n)$. The existence of τ is the Ganea definition of the *normalized* LS-category of π , $cat_G(\pi)$, being less than or equal to n. For the others we set:

Definition 2: Let $\lambda: \mathcal{S} \to \mathcal{S}$ be a regular coaugmented functor and $\pi: E \to B$ in S_{\ast} . Then:

- the Ganea λ -category of π , $\lambda cat_G(\pi)$, is the least integer n (or ∞) such that $\lambda(q_n)$ admits a section σ up to pointed homotopy;

 τ the Ganea λ_{\flat} -category of π , $\lambda_{\flat} cat_G(\pi)$, is the least integer n (or ∞) such that there exists $s: B \to \lambda(G_n(E, \pi))$ satisfying $\lambda(q_n) \circ s \simeq \iota_\lambda(B);$

- **the Toomer** λ -invariant of π , $e_{\lambda}(\pi)$, is the least integer n (or ∞) such that $\lambda(q_n)$ admits a section ρ up to pointed homotopy.

In the particular case $\pi = (* \rightarrow B)$ we write $\lambda cat(B) := \lambda cat_{G}(* \rightarrow B)$, $\lambda_b cat(B) := \lambda_b cat_G(* \to B)$ and $e_{\lambda}(B) = e_{\lambda}(* \to B)$.

As we will see below, this presentation unifies the following approximations of the Lusternik Schnirelmann category:

 $-$ *Mcat* of a rational space [HL88] is a special case of λ cat_G [SS99],

- the strict category weight [Rud99], [Str00], IVan00] fits into the setting of $\lambda_b cat_G$

 $-$ the Toomer invariant introduced in [Too74] is equal to e_M for M the abelian group completion of $\lambda = Sp^{\infty}$, cf. Example 2.

If τ is a section of q_n we get a section of $\overline{\lambda}(q_n)$ by

$$
\sigma := \iota_{\overline{\lambda}}(G_n(E,\pi)) \circ \tau.
$$

In the same way, if σ is a homotopy section of $\overline{\lambda}(q_n)$ the composite

$$
s := r_{\overline{\lambda}}(G_n(E, \pi)) \circ \sigma
$$

is a lifting up to homotopy of $\iota_{\lambda}(B)$ through $\lambda(q_n)$. That is:

$$
cat_G(\pi) \geq \lambda cat_G(\pi) \geq \lambda_bcat_G(\pi).
$$

With an extra hypothesis the existence of a lifting up to homotopy s implies the existence of a homotopical section of $\lambda(q_n)$ (see the end of Section 1):

PROPOSITION 1: Suppose that λ is a regular coaugmented functor equipped with *a natural transformation* $\lambda^2 = \lambda \circ \lambda \to \lambda$ whose composition with $\lambda(\iota_\lambda)$ is equal *to the identity* $\lambda \to \lambda^2 \to \lambda$. Let $s: B \to \lambda(G_n(E,\pi))$ such that $\lambda(q_n) \circ s \simeq \iota_\lambda(B)$. *Then there exists a homotopical section* $\rho: \lambda(B) \to \lambda(G_n(E, \pi))$ *of* $\lambda(q_n)$ *and we* have $\lambda_b cat_G(\pi) = e_\lambda(\pi)$.

This applies in particular if λ together with the coaugmentation and the transformation $\lambda^2 \rightarrow \lambda$ constitutes a triple (see Section 2).

In Definition 2 the subscript $_G$ is chosen to make a distinction from another notion of category of a map due to Fox [Fox41], Berstein and Ganea [BG62] (see also Section 7 of [Jam78]) which admits also variants with a fibrewise construction.

0.2. UNPOINTED VERSION OF POINTED FUNCTORS. In the fibrewise construction $\overline{\lambda}$ associated to a functor $\lambda: \mathcal{S} \to \mathcal{S}$ the basepoint free situation is essential and we first meet the problem that the examples of functors that we have in mind, such as the infinite symmetric product, need a basepoint. Therefore for any regular coaugmented functor $\mu: S_* \to S_*$ we define a canonical functor $\mu^+: S \to S$ called basepoint free functor associated to μ :

For $Y \in \mathcal{S}$ we denote by $Y + \in \mathcal{S}_*$ the space Y with an extra point added and considered as the basepoint. Let $* \rightarrow *+ \rightarrow \mu(*+)$ be the map obtained from the canonical inclusion and the coaugmentation. Denote by $*_\mu \to \mu(*+)$ the fibration associated to the composition $* \to \mu(*+)$. The functor $Y \mapsto$ $\mu^+(Y)$ is defined by the following pullback:

By naturality the composite $Y \to Y + \to \mu(Y+) \to \mu(*+)$ factorizes as $Y \to * \to^+$ μ (*+) and we get a coaugmentation $Y \to \mu^+(Y)$ from the universal property of pullbacks. Note that $\mu^+(Y)$ is naturally equivalent to the homotopy fibre of $\mu(Y+) \to \mu(*+)$ over $* \in \mu(*+).$

We will say that a coaugmented functor $\mu: \mathcal{S}_* \to \mathcal{S}_*$ has a basepoint free version if there exists a coaugmented functor $\lambda: \mathcal{S} \to \mathcal{S}$ and a natural transformation between λ' and μ compatible with the coaugmentations and which is a weak equivalence for any $X \in \mathcal{S}_{*}$. Sometimes, as in Proposition 4 below, μ^{+} is a basepoint free version of μ .

Let Σ (resp. Ω) be the reduced suspension (resp. the loop space) in S_{\star} . In this paper we are mainly concerned with the functors $M = Sp^{\infty}$, $\Omega^n \Sigma^n$, $Q =$ $\lim_{\rightarrow} \Omega^n \Sigma^n$ and their basepoint free functors M^+ , $P^n = (\Omega^n \Sigma^n)^+$, Q^+ . We also consider the localization functor L_f [DF96]. The functors M and Q are particular cases of a more general construction, the infinite delooping associated to any <u>S</u>-algebra [Ada78], [EKMM97].

We will see that M^+ (resp. Q^+) is a basepoint free version of M (resp. Q). For $\Omega^n \Sigma^n$ the situation is more complicated: we construct a basepoint free version $Q^{n}: \mathcal{S} \to \mathcal{S}$ which is not homotopically equivalent to $P^{n} = (\Omega^{n} \Sigma^{n})^{+}$. We have a general comparison theorem between all these invariants:

THEOREM 1: Let $\pi: E \to B$ in \mathcal{S}_* and $n \geq m$. Then we have the following series *of inequalities:*

$$
cat_G(\pi) \ge Q^m cat_G(\pi) \ge Q^n cat_G(\pi) \ge P^n cat_G(\pi)
$$

$$
\ge Qcat_G(\pi) \ge Mcat_G(\pi) \ge e_M(\pi).
$$

The proof will be given after Example 3 of Section 2.

For rational spaces all the invariants of Theorem 1, except the Toomer invariant, coincide. In fact, in this case, examples for the strict inequality $Mcat(B) > e_M(B)$ can be found in [Fél89, Théorème 12.4.1]. In the last section we will give examples of spaces which show that all the inequalities can be strict except possibly $Q^n cat_G \geq P^n cat_G$. The inequalities in Theorem 1 result from the existence of natural transformations between the related funetors.

The functions $Pⁿcat_G$ and $Qcat_G$ can be compared with stabilized variants of Lusternik-Schnirelmann category studied in [Rud99], [Str00], [Van98], [Van00].

Definition 3: Given $\pi: E \to B$ in \mathcal{S}_{*} , let $\sigma^{i}cat_G(\pi)$ be the least integer n (or ∞) such that $\Sigma^i G_n(E, \pi) \to \Sigma^i B$ admits a right homotopy inverse. For simplicity we shall write σcat_G for $\sigma^\infty cat_G$.

From the adjunction formula between Ω^i and Σ^i it follows that $\sigma^i cat_G(\pi)=$ Q_c^i cat_G(π) and therefore, as a particular case of the inequality λ cat_G(π) \geq $\lambda_b cat_G(\pi)$ from above, we obtain:

PROPOSITION 2: Let $(\pi: E \to B) \in S_*$. Then one has $Qcat_G(\pi) \geq \sigma cat_G(\pi)$ and Q^i *cat_G*(π) $\geq \sigma^i$ *cat_G*(π).

0.3. THE INVARIANTS AND CARTESIAN PRODUCTS. It was a question of Ganea [Gan71] called the Ganea conjecture whether the equality $cat(Y \times S^T)$ = $cat(Y) + 1$ holds for Y connected and $r \geq 1$. By a result of N. Iwase [Iwa98] this is not always true. It is true, however, that $\sigma cat(Y \times S^r) = \sigma cat(Y) + 1$ by [Rud99], [Van00]. For rational simply connected spaces Y, Z of finite type over the rationals the general formula $cat(Y \times Z) = cat(Y) + cat(Z)$ holds [FHL98] (cf. [Jes90] and [Hes91] for $Z = S^r$).

About our invariants, in particular about *Qcat,* we can state the following:

THEOREM 2: Let Y, $Z \in \mathcal{S}_*$. Then for $\lambda = Q$, P^n , Q^n , M or for λ a localization *functor* L_f we have

$$
\lambda cat(Y \times Z) \leq \lambda cat(Y) + \lambda cat(Z).
$$

Moreover, the corresponding inequality holds also for λ_b *cat.*

Remark: The equality $Qcat(X \times S^r) = Qcat(X) + 1$ is true if $Qcat(X)$ = $\sigma cat(X)$. For then

$$
Qcat(X \times S^r) \leq Qcat(X) + 1 = \sigma cat(X) + 1 = \sigma cat(X \times S^r)
$$

and, by Proposition **2,**

$$
Qcat(X \times S^r) \geq \sigma cat(X \times S^r) = Qcat(X) + 1.
$$

0.4. HOPF INVARIANTS. Finally we introduce the notion of Hopf invariants adapted to our situation and prove that they determine if λcat grows when attaching a cell. We also apply them to find examples where the invariants *cat, Qncat, Qcat, Mcat, acat* are different.

Recall that the counter-examples of Iwase [Iwa98] to the Ganea conjecture are complexes $X = Y \cup_{\varphi} e^p$ such that the Hopf invariant of φ is not zero but some suspension of it is zero. This phenomenon is, by the definition of *Qcat,* ruled out for the corresponding Hopf invariant. Therefore we may state:

PROBLEM 1: *Does Qcat satisfy the analogue of the Ganea conjecture, i.e., for X connected and* $r \geq 1$ *does* $Qcat(X \times S^r) = Qcat(X) + 1$ *hold?*

Indeed, L. Vandembroucq [Van01] answered the question in the positive for finite complexes X .

It follows that for finite connected CW-complexes X with $Qcat(X) = cat(X)$ the Ganea conjecture holds for X . We would like to conjecture that the reverse implication is also true:

PROBLEM 2: Let X be a finite connected CW-complex. If $Qcat(X) < cat(X)$ *then there exists r* ≥ 1 *such that cat(X* $\times S^r$ *) = cat(X).*

In our application of Hopf invariants we verify this for 2-cell complexes. We also construct an infinite CW-complex X such that

 $Qcat(X) < cat(X)$ and $cat(X \times S^r) = cat(X) + 1$ for any $r > 1$.

We may remark also that this example allows a variation of Problem 2 as: *Let X* be a connected CW-complex. Then $Q^rcat(X) < cat(X)$ if, and only if,

$$
cat(X \times S^r) = cat(X).
$$

We mention finally that, under some restrictions on dimension and connectivity, a mapping version of Problem 2 is proved for rational spaces in [Sta98].

The paper is organized as follows. In Section 1 we recall some more properties of Dror Farjoun's fibrewise application of regular functors. We also study the basepoint free functor associated to a coaugmented functor $S_* \to S_*$ and prove Propostion 1. In Section 2 we discuss the case of the functors Q , the abelian group completion M of Sp^{∞} and $\Omega^n \Sigma^n$. In fact we defer the topological construction of a basepoint free version of $\Omega^n \Sigma^n$ to Appendix B. In Section 3 we prove Theorem 2 and in Section 4 we present the theory of Hopf invariants for λcat and $\lambda_b cat$.

1. Fibrewise application of functors

1.1. CONSEQUENCES OF DROR FARJOUN'S CONSTRUCTION. Let $\lambda: \mathcal{S} \to \mathcal{S}$ be a regular coaugmented functor. Let $\pi: E \to B$ be a fibration and let $E \to \overline{\lambda}(E)$ over id_B be the construction of Dror Farjoun referred to in the introduction. For the convenience of the reader we will describe it in Appendix A. Directly from it we deduce:

PROPERTY 1: Let $\pi: E \to B$ be a fibration with B connected. Let $\lambda_1, \lambda_2: S \to S$ *be two regular coaugmented functors and* $\mathcal{L}: \lambda_1 \to \lambda_2$ *be a natural transformation compatible with the coaugmentations. Then* $\mathcal L$ *induces a natural transformation over B,* $\overline{\mathcal{L}}: \overline{\lambda}_1 \to \overline{\lambda}_2$. As a consequence we have

$$
\lambda_1 cat_G(\pi) \geq \lambda_2 cat_G(\pi).
$$

Moreover, if $\mathcal{L}(Y)$ is a weak equivalence for any $Y \in \mathcal{S}$ then $\overline{\mathcal{L}}(E)$ is a weak *equivalence for any E and*

$$
\lambda_1 cat_G(\pi)=\lambda_2cat_G(\pi).
$$

1.2. BASEPOINT FREE VERSION OF $\mu: S_{*} \to S_{*}$. We now study the relation between μ and the basepoint free functor μ^+ : $\mathcal{S} \to \mathcal{S}$ defined in the introduction. The following two properties are immediate:

PROPERTY 2: Let μ_1, μ_2 : $S_* \to S_*$ be two regular coaugmented functors. Let $\mathcal{L}: \mu_1 \to \mu_2$ be a natural transformation compatible with the coaugmentations. *Then* $\mathcal L$ induces a natural *transformation* $\mathcal L^+$: $\mu_1^+ \to \mu_2^+$. Moreover, if $\mathcal L(X)$ is *a* weak equivalence for any $X \in S_*$ then $\mathcal{L}^+(Y)$ is a weak equivalence for any $Y \in \mathcal{S}$.

In the particular case of the functor μ^+ : $S \to S$, Proposition 7 of Appendix A implies:

PROPERTY 3: Let $\mu: S_* \to S_*$ be a regular coaugmented functor and μ^+ : $S \to S$ the associated basepoint free functor. Let $\pi: E \to B$ in S_* be a fibration with fibre *F*. Then the homotopy fibre of $\overline{\mu^{+}}(E) \rightarrow B$ is equivalent to the homotopy *fibre of* $\mu(F+) \rightarrow \mu(*+)$ *over* *.

If we start from a basepoint free coaugmented functor $\lambda: S \rightarrow S$, we may compare λ with the associated free construction of the associated functor $\lambda' : S_* \to$ \mathcal{S}_* :

PROPOSITION 3: Let $\lambda: S \rightarrow S$ be a regular coaugmented functor. Then there exists a *natural transformation* $\lambda \rightarrow (\lambda')^+$ *compatible with the coaugmentations.*

We now state a sufficient condition for μ and $(\mu^+)'$ to be equivalent:

Let $\mu: \mathcal{S}_* \to \mathcal{S}_*$ be a regular coaugmented functor with values in the category $\mathcal G$ of grouplike spaces (we assume that the base point of a grouplike space is its unit element). For $X \in \mathcal{S}_*$ let $* \to \mu(X)$ be the composition $* \to \mu(*) \to \mu(X)$ and denote by $*_{{\mu}(X)} \to {\mu}(X)$ the fibration associated to $* \to {\mu}(X)$.

Denote by $X + \to X$ the canonical map in S_* (taking + to the basepoint of X) and by \hat{F} the pullback of $*_{\mu(X)} \to \mu(X)$ and $\mu(X+) \to \mu(X)$. The universal property of pullbacks gives a factorization of μ (*+) $\rightarrow \mu$ (X+):

Since the homotopy fibre F of $\mu(X+) \to \mu(X)$ over $*$ is equivalent to \hat{F} , we can view σ_1 as a map into F.

PROPOSITION 4: *Using the notation above suppose that* σ_1 : μ (*+) \rightarrow *F* is a *weak equivalence and* $\pi_0(\mu(X+)) \to \pi_0(\mu(X))$ *is surjective. Then the composite* $\mu^+(X) \to \mu(X+) \to \mu(X)$ is a weak equivalence.

Proof of Proposition 3: In the following square, $* \rightarrow \lambda(*)$ is a weak equivalence and a cofibration and $*_\lambda \rightarrow \lambda(*+)$ a fibration. Therefore there exists the dashed arrow making the diagram commutative:

The result follows from the definition of $(\lambda')^+$ as a pullback and the existence of a factorization of the composite $\lambda(X) \to \lambda(X+) \to \lambda(*)$ as $\lambda(X) \to \lambda(*)$ -+ λ (*+). **m**

Proof of Proposition 4: First we look at the different base points. The universal property of pullbacks gives a factorization of some canonical maps:

Therefore $\mu^+(X) \in \mathcal{S}_*$ and $j(*) = *$. Note also that the canonical map $(X + \to + \infty)$ X) \in S_{*} induces $(\mu(X+) \rightarrow \mu(X)) \in \mathcal{G}$, with neutral element + (resp. *) in $\mu(X+)$ (resp. $\mu(X)$).

The map $(\mu(X+) \to \mu(*+)) \in \mathcal{G}$ admits a section up to homotopy $\sigma = \sigma_2 \circ \sigma_1$ which gives a homotopy equivalence $\varphi: \mu(*+) \times \mu^+(X) \to \mu(X+), \ (\alpha, \beta) \mapsto$ $\sigma_2(\sigma_1(\alpha))$. $*^{-1}$ $j(\beta)$. The result follows now from the five lemma applied to the following homotopy commutative diagram of homotopy fibrations:

$$
F \xrightarrow{\sigma_2} \mu(X+) \xrightarrow{\mu(X)} \mu(X)
$$

\n
$$
\downarrow^{\sigma_1} \qquad \qquad \downarrow^{\phi} \
$$

with $\mu(*+) \to \mu(*+) \times \mu^+(X)$, $\alpha \mapsto (\alpha, *)$.

We end this section with the

Proof of Proposition 1: This follows directly from the following diagram

The left triangle homotopy commutes because $\lambda(q_n) \circ s \simeq \iota_\lambda(B)$ and λ , preserving weak equivalences, preserves the homotopy relation.

2. Specific constructions: $\Omega^n \Sigma^n$, $\Omega^\infty \Sigma^\infty$, Sp^∞

Example 1: The functor $Q = \Omega^{\infty} \Sigma^{\infty}$ satisfies the assumptions of Proposition 4. In fact let $X \in \mathcal{S}_{*}$. The homotopy groups of $Q(X)$ constitute a reduced homology theory. From the cofibration sequence $(*+) \rightarrow (X+) \rightarrow X$ (which admits a retraction $(X+) \rightarrow (*+)$ we deduce that the homotopy sequence of $Q(\ast+) \to Q(X) \to Q(X)$ decomposes into split short exact sequences. Therefore $Q^+(X) \to Q(X)$ is a homotopy equivalence. We also note that this statement is a particular case of [BE74, Corollary 7.4].

Example 2: Let R be a commutative ring with unit 1. For $X \in \mathcal{S}$ denote by $R \odot X$ the free R-module generated by X. If $X \in S_*$ we define $M_R(X) :=$ $R \otimes X/R \otimes *$. For $R = \mathbb{Z}$ we obtain in particular $M(X)$. Proposition 4 applies to M_R and $M^+(X)$ is the simplicial set with *n*-simplices the finite linear combinations $\sum r_i \sigma_i$ of *n*-simplices of X with $\sum r_i = 1$. This basepoint free version of $M_R(X)$ occurs for example in [BK72]. If $X \in \mathcal{S}_*$ is connected $M(X)$ coincides with the infinite symmetric product $Sp^{\infty}(X)$.

Remark that Q^+ and M_R are examples of triples.

Example 3: For the construction of a basepoint free version Q^n of $\Omega^n \Sigma^n$: $S_* \to S_*$ we refer to Appendix B. We remark that the basepoint free construction $P^n = (\Omega^n \Sigma^n)^+$ is not homotopically equivalent to Q^n .

Proof of Theorem 1: Property 1 is the key point for the comparison between two invariants: we need only to exhibit natural transformations compatible with the coaugmentations.

• There is a natural transformation $Q \to M_{\mathbb{Z}}$ compatible with the coaugmentations (see, e.g., [CM95, 7.3]). An easy way to construct it is to use the combinatorial model of Barratt and Eccles [BE74]. Thus we have $Qcat_G(\pi) \geq Mzcat_G(\pi)$.

• If $m \leq n$ the natural transformation $Q^m \to Q^n$ in Top gives $Q^mcat_G(\pi) \geq$ $Q^ncat_G(\pi)$; cf. Appendix B.

• From Proposition 3 we get a natural transformation $Q^n \to ((Q^n)')^+$. By Appendix B there is a natural transformation $(Q^n)' \to \Omega^n \Sigma^n$; thus composing $Q^n \to ((Q^n)')^+ \to (\Omega^n \Sigma^n)^+$ provides a natural transformation $Q^n \to P^n$.

• The inequality $P^ncat_G(\pi) \geq Qcat_G(\pi)$ comes from the natural transformation $\Omega^n \Sigma^n \to \Omega^\infty \Sigma^\infty$.

• The existence of a homotopical section to $M(q_n)$ could be chosen as a definition for Toomer's invariant. Therefore $Mcat(X) \geq e_M(X)$ is a direct consequence of Proposition 1.

• The remaining inequality $cat_G(\pi) \geq Q^ncat_G(\pi)$ is obvious.

3. Product formulae

The proof of Theorem 2 will be based on the following result of [SS99]: Let $\lambda: \mathcal{S} \to \mathcal{S}$ be a regular coaugmented functor. If there is a natural transformation $\lambda(Y) \times \lambda(Z) \rightarrow \lambda(Y \times Z)$ which is compatible with the coaugmentations, then the product formula $\lambda cat(Y \times Z) \leq \lambda cat(Y) + \lambda cat(Z)$ holds. The corresponding formula for $\lambda_b cat$ follows even more easily.

PROPOSITION 5: *Suppose that* $\lambda: S \to S$ is coaugmented by $\iota_{\lambda}: id \to \lambda$. Assume *that there are natural transformations* $\lambda(Y) \times Z \rightarrow \lambda(Y \times Z)$ and $m: \lambda^2 \rightarrow \lambda$ *which* are *compatible with the eoaugmentations.*

Then there is a natural transformation $\lambda(Y) \times \lambda(Z) \rightarrow \lambda(Y \times Z)$.

Proof: The transformation consists of the composition $\lambda(Y) \times \lambda(Z) \rightarrow$ $\lambda(Y \times \lambda(Z)) \to \lambda^2(Y \times Z) \to \lambda(Y \times Z).$

Remark: If λ is as in Proposition 1, then there exists m with $m \circ \iota_{\lambda}(d(Y)) =$ $id_{\lambda(Y)}$ for $Y \in \mathcal{S}$.

COROLLARY 1: Let $\mu: \mathcal{S}_* \to \mathcal{S}_*$ be coaugmented such that there exist natural *transformations* $\mu(X) \times X' \to \mu(X \times X')$ and $\mu^2(X) \to \mu(X)$ compatible with *the coaugmentations.*

Then there is a natural transformation $\mu^+(Y) \times \mu^+(Z) \to \mu^+(Y \times Z)$ *of functors* $S \times S \rightarrow S$.

Proof. Let $\overline{\mu}(Y) = \mu(Y+)$ for $Y \in \mathcal{S}$. Then it suffices to show that $\overline{\mu}$ satisfies the assumptions on λ of Proposition 5.

(a) $\overline{\mu}(Y) \times Z = \mu(Y +) \times Z \rightarrow \mu(Y +) \times (Z +) \rightarrow \mu((Y +) \times (Z +)) \rightarrow$ $\mu((Y \times Z)+) = \overline{\mu}(Y \times Z)$. The last arrow is induced by the canonical map $(Y+) \times (Z+) \rightarrow (Y \times Z) +$.

(b) $\overline{\mu}^2(Y) = \mu((\mu(Y+)) + \mu(\mu(Y+)) \rightarrow \mu(Y+)) = \overline{\mu}(Y)$. The first arrow is induced by the map $(\mu(Y+)) + \rightarrow \mu(Y+)$ which is the identity on $\mu(Y+)$ and maps + to the basepoint + $\in \mu(Y+)$.

Proof of Theorem 2: We need only to observe from Proposition 8 of Appendix B that the basepoint free versions of Q and $\Omega^n \Sigma^n$ satisfy the assumptions of Proposition 5.

The combinatorial models Γ for $\Omega^{\infty} \Sigma^{\infty}$ of [BE74] and Γ^{n} for $\Omega^{n} \Sigma^{n}$ of [Smi89] are convenient too. It has been shown directly in $[BE74]$ that Γ in particular satisfies the assumptions of Corollary 1. A close look at the combinatorial details shows that this is also true for $\Gamma^n \subset \Gamma$. Thus the functor P^n satisfies the conditions of Proposition 5.

For $\mu = \Omega^n \Sigma^n$ we can also argue topologically. The second transformation needed in Corollary 1 exists for μ but --perhaps-- not the first one. However, we show that $\bar{\mu}$ admits a natural transformation $\bar{\mu}(Y) \times Z \to \bar{\mu}(Y \times Z)$ compatible with the coaugmentations. It follows that μ^+ (hence P^n) is a functor as in Proposition 5.

To give the required formula we write $\sum^n (Y+) = S^n \wedge (Y+) = S^n \rtimes Y$ where $x: \mathcal{S}_* \times \mathcal{S} \to \mathcal{S}_*$ is the halfsmash. Then we have

$$
\Sigma^{n}((Y \times Z) +) = S^{n} \rtimes (Y \times Z) = (S^{n} \rtimes Y) \rtimes Z.
$$

We define $\Phi: \Omega^n \Sigma^n(Y+) \times Z \rightarrow \Omega^n \Sigma^n((Y \times Z)+)$ by $\Phi(w, z)(t) = [w(t), z]$ where $w: S^n \to \Sigma^n(Y+)$, $t \in S^n$, and $[w(t), z]$ denotes the class of $(w(t), z)$ in $(S^n \rtimes Y) \rtimes Z$.

For the localization functor, L_f , we observe [DF96, pages 21-23] the existence of a natural transformation $L_f(Y) \times Z \to L_f(Y \times Z)$ which gives a natural transformation $L_f(Y) \times L_f(Z) \to L_f L_f(Y \times Z)$. The coaugmentation induces a weak equivalence $L_f \to L_f L_f$ and we deduce $L_f cat(Y \times Z) = L_f L_f cat(Y \times Z) \leq$ $L_fcat(Y) + L_fcat(Z).$

4. Hopf invariants

Let $X \in \mathcal{S}_*$ and $\alpha: S^r \to X$ be a map with cofibre $Y = X \cup_{\alpha} e^{r+1}$.

We will characterize the relationship between the different λ LS-type invariants of X and Y in terms of a homotopy class associated to α and called a **Hopf invariant**. We use the presentation of [Iwa98]. For $\lambda = id$ this coincides with the Berstein–Hilton definition [BH60] (see [Van98, Proposition 3.2.7] for a detailed proof). In this section we will make no distinction between maps and (pointed) homotopy classes of maps.

4.1. DEFINITION AND PROPERTIES. Consider first the adjoint $\alpha^{\sharp}: S^{r-1} \to \Omega X$ of α whose supension gives a homotopy class $\Sigma \alpha^{\sharp}$: $S^{r} \to \Sigma \Omega X$ into the first Ganea space associated to X. By composition with the maps $\kappa_n^X \colon \Sigma \Omega X \to$ $G_n(X)$ coming from the construction of the Ganea fibrations we have maps $\kappa_n^X \circ \Sigma \alpha^{\sharp}$: $S^r \to G_n(X)$. We work with the absolute case and the situation described in the introduction becomes:

Recall that $\iota_{\lambda}(G_n(X)) = r_{\overline{\lambda}}(G_n(X)) \circ \iota_{\overline{\lambda}}(G_n(X)).$

Definition 4: (1) Suppose that $\overline{\lambda}(q_n^X): \overline{\lambda}(G_n(X)) \to X$ admits a homotopical section σ . Then the Hopf-invariant associated to $(\sigma, \lambda, \alpha)$ is:

$$
\mathcal{H}'_{\sigma,\lambda}(\alpha) := \bigl(\iota_{\overline{\lambda}}(G_n(X)) \circ \kappa_n^X \circ \Sigma \alpha^{\sharp}\bigr) - (\sigma \circ \alpha) \in \pi_r(\overline{\lambda}(G_n(X))).
$$

(2) Suppose there exists $s: X \to \lambda(G_n(X))$ such that $\lambda(q_n^X) \circ s \simeq \iota_\lambda(X)$. Then the Hopf-invariant associated to (s, λ, α) is:

$$
H_{s,\lambda}(\alpha) := (\iota_{\lambda}(G_n(X)) \circ \kappa_n^X \circ \Sigma \alpha^{\sharp}) - (s \circ \alpha) \in \pi_r(\lambda(G_n(X))).
$$

Remark: Consider β : $S^t \rightarrow S^r$ a co_H-map (for instance, a suspension) and $\alpha: S^r \to X$. Directly from Definition 4 we have $\mathcal{H}_{\sigma,\lambda}(\alpha \circ \beta) = \mathcal{H}_{\sigma,\lambda}(\alpha) \circ \beta$ and $H_{\sigma,\lambda}(\alpha\circ\beta)=H_{\sigma,\lambda}(\alpha)\circ\beta.$

The element $\mathcal{H}'_{\sigma,\lambda}(\alpha) \in \pi_r(\overline{\lambda}(G_n(X)))$ lifts in the fibre as an element denoted by $\mathcal{H}_{\sigma,\lambda}(\alpha) \in \pi_r(\lambda(F_n(X)))$ and there is no indeterminacy in this lifting because $\lambda(F_n(X)) \to \overline{\lambda}(G_n(X))$ induces an injection between homotopy groups. Notice that we are distinguishing between $\mathcal{H}_{\sigma,\lambda}$ and $\mathcal{H}'_{\sigma,\lambda}$. We do this because though $\mathcal{H}'_{\sigma,\lambda}$ always determines $\mathcal{H}_{\sigma,\lambda}$, $\iota_\lambda(G_n(X))_* \circ \mathcal{H}'_{\sigma,\mathrm{id}}$ does not determine $\iota_{\lambda}(G_n(X))_{*} \circ \mathcal{H}_{\sigma,\mathrm{id}}$. This turns out to be one source of examples where the invariants we study differ; cf. Corollary 2.

We consider the classical Hopf invariant of Berstein-Hilton [BH60] as a particular case of $\mathcal{H}_{\sigma,\lambda}$ for $\lambda = id$ and use, in this case, the notation \mathcal{H}_{σ} (or H_{σ}). If there is a unique homotopy class of section we shorten the notation in \mathcal{H} (or H).

The LS-category of the skeleton of a non-contractible CW-complex is always less than or equal to the LS-category of the total space [Sta00]. This property can be extended to the setting of λcat as follows:

THEOREM 3: Let λ : $S \rightarrow S$ be a regular coaugmented functor preserving k*equivalences for any k > 0. Let X be a* $(k-1)$ *-connected CW-complex and* $X^{(r)}$ *be its r-skeleton. We suppose* $r \geq k$ *,* $(k \geq 2 \text{ and } n \geq 1)$ *or* $(k = 1 \text{ and } n \geq 2)$ *.*

For any section σ of $\overline{\lambda}(q_n^X)$: $\overline{\lambda}(G_n(X)) \to X$, $n \geq 1$, there exists a compat*ible section* σ_r of $\bar{\lambda}(G_n(X^{(r)})) \to X^{(r)}$. In other words the following diagram *commutes:*

$$
\overline{\lambda}(G_n(X^{(r)})) \longrightarrow \overline{\lambda}(G_n(X))
$$
\n
$$
\downarrow^{\frown}_{X^{(r)}} \qquad \qquad \downarrow^{\frown}_{X}
$$
\n
$$
X^{(r)} \longrightarrow X
$$

As a consequence, if X is simply connected and $cat(X) \geq 1$ or X is connected and $cat(X) \geq 2$, we have $\lambda cat(X^{(r)}) \leq \lambda cat(X)$, for any $r \geq k$.

We show now that the Hopf invariant characterizes in a certain way the growth of the LS-category when a cell is attached to a CW-complex. The following theorem generalizes results of [BH60], [Iwa98], [Sta00] and [Van98]:

THEOREM 4: Let $\lambda: S \rightarrow S$ be a regular coaugmented functor and X be a *connected space of associated Ganea fibration* q_n^X *:* $G_n(X) \rightarrow X$. Consider $\alpha: S^r \to X$. Denote by $Y = X \cup_{\alpha} e^{r+1}$ the space X with a cell attached along α and by $\rho: X \to Y$ the canonical inclusion.

(1) If there is some homotopy section σ of $\overline{\lambda}(q_n^X)$ such that $\mathcal{H}_{\sigma,\lambda}(\alpha) = 0$ then $\lambda cat(Y)\leq n.$

(2) We suppose $n > 1$ or X simply connected. If λ preserves $(r+1)$ -equivalences, $r > 1$ and $\dim X \leq r$ then: $\lambda cat(Y) \leq n$ iff there exists a homotopy section σ of $\overline{\lambda}(q_n^X)$ such that $\mathcal{H}_{\sigma,\lambda}(\alpha) = 0$.

(3) Suppose that λ is a regular coaugmented functor equipped with a natural *transformation* $\lambda^2 = \lambda \circ \lambda \to \lambda$ whose composition with $\lambda(\iota_{\lambda})$ is equal to the *identity* $\lambda \to \lambda^2 \to \lambda$. If there exists s: $X \to \lambda(G_n(X))$ such that $\lambda(q_n^X) \circ s \simeq$ $\iota_{\lambda}(X)$ and $H_{s,\lambda}(\alpha) = 0$ then $\lambda_{\mathfrak{b}}cat(Y) \leq n$.

The hypothesis required on λ in the statements (2) and (3) are satisfied by the functors Q^n , P^n , Q , $M = Sp^{\infty}$.

Suppose there exists a natural transformation $\mathcal{L}: \lambda_1 \to \lambda_2$ compatible with the coaugmentations between two regular coaugmented functors. If σ_1 is a homotopical section of $\overline{\lambda}_1(q_n^X)$ we define a homotopical section of $\overline{\lambda}_2(q_n^X)$ by $\sigma_2 := \mathcal{L}(G_n(X)) \circ \sigma_1$ and we have $\mathcal{H}'_{\sigma_2,\lambda_2} = \mathcal{L}(G_n(X)) \circ \mathcal{H}'_{\sigma_1,\lambda_1}$. We may also define a lifting s_1 from σ_1 and the Hopf invariant H_{s_1,λ_1} is obtained from $\mathcal{H}'_{\sigma_1,\lambda_1}$

by composition with $\overline{\lambda}_1(G_n(X)) \to \lambda_1(G_n(X))$. These considerations and Theorem 4 give us directly a relationship between the different Hopf invariants associated to our functors:

COROLLARY 2: *Let X be a simply connected space of LS-category n with a section* $\tau: X \to G_n(X)$ to the Ganea fibration q_n^X . Let $\alpha: S^r \to X$ and $Y =$ $X \cup_{\alpha} e^{r+1}$. Denote by $\mathcal{H}_{\tau}(\alpha) \in \pi_r(F_n(X))$ and $\mathcal{H}'_{\tau}(\alpha) \in \pi_r(G_n(X))$ the Hopf *invariants associated to* (τ, α) and by *Hur the Hurewicz homomorphism. Then we have:*

- $\Sigma^{i}\mathcal{H}_{\tau}(\alpha) = 0 \Rightarrow Q^{i}cat(Y) \leq n;$
- $\Sigma^{i} \mathcal{H}'_{\tau}(\alpha) = 0 \Rightarrow \sigma^{i} cat(Y) \leq n;$
- Hur $\mathcal{H}_{\tau}(\alpha) = 0 \Rightarrow Mcat(Y) \leq n;$
- Hur $\mathcal{H}'_{\tau}(\alpha) = 0 \Rightarrow e(Y) \leq n$.

Coming back to the general situation we will prove that Theorem 4 implies:

COROLLARY 3: Let λ be a regular coaugmented functor and $\alpha: S^r \to X$. Then

$$
\lambda cat(X \cup_{\alpha} e^{r+1}) \leq \lambda cat(X) + 1.
$$

The argument used in the proof of Corollary 3 does not work for λ_b cat. In fact, by [KV00], there is an example X with $e(X \cup_{\alpha} e^{r+1}) = e(X) + 2$.

We present now some particular results used in the proofs:

LEMMA 1: Consider the situation of Theorem 4 and let $\overline{\lambda}(G_n(\rho))$: $\overline{\lambda}(G_n(X)) \to$ $\overline{\lambda}(G_n(Y))$ and $\lambda(G_n(\rho)): \lambda(G_n(X)) \to \lambda(G_n(Y))$ be the maps induced by $\rho: X \to Y$ *Y.*

(i) If $\overline{\lambda}(q_n^X)$ admits a homotopy section σ we have:

$$
\overline{\lambda}(G_n(\rho))\circ\sigma\circ\alpha\simeq-\left(\overline{\lambda}(G_n(\rho))\circ\mathcal{H}'_{\sigma,\lambda}(\alpha)\right).
$$

(ii) *If s exists we have:*

$$
\lambda(G_n(\rho))\circ s\circ\alpha\simeq -(\lambda(G_n(\rho))\circ H_{s,\lambda}(\alpha)).
$$

LEMMA 2: Let $r \geq k \geq 1$. Let B be a $(k-1)$ -connected CW-complex of dimension $\leq r$. Consider the cofibration $\vee_J S^r \to B \to C = B \cup_J e^{r+1}$. Let $k \geq 2$ or $(k = 1$ and $n \geq 2$). Then, for $n \geq 1$, the map $B \to C$ induces an $(r + 1)$ -equivalence $F_n(B) \to F_n(C)$ between the fibres of Ganea fibrations.

LEMMA 3: Let $S^r \xrightarrow{\alpha} B \xrightarrow{\rho} C = B \cup_{\alpha} e^{r+1}$ be a cofibration and $p: Y \to C$ be a map such that $\pi_{r+1}(p)$ is surjective. Let $\varphi: B \to Y$ be a map such that $\varphi \circ \alpha \simeq *$ and $p \circ \varphi \simeq \rho$. Then there exists $\sigma: C \to Y$ such that $\sigma \circ \rho \simeq \varphi$ and $p \circ \sigma \simeq id_C$.

The end of this section is devoted to proofs beginning with the proofs of the Lemmas.

Proof of Lemma 1: By definition we have:

$$
\overline{\lambda}(G_n(\rho)) \circ \sigma \circ \alpha = \overline{\lambda}(G_n(\rho)) \circ [-(\mathcal{H}'_{\sigma,\lambda}(\alpha)) + \iota_{\overline{\lambda}}(G_n(X)) \circ \kappa_n^X \circ \Sigma \alpha^{\sharp}].
$$

The required equality follows from

$$
\overline{\lambda}(G_n(\rho)) \circ \iota_{\overline{\lambda}}(G_n(X)) \circ \kappa_n^X \circ \Sigma \alpha^{\sharp} \simeq \iota_{\overline{\lambda}}(G_n(Y)) \circ \kappa_n^Y \circ \Sigma \Omega \rho \circ \Sigma \alpha^{\sharp} \simeq *.
$$

The verification of (ii) is similar. \blacksquare

Proof of Lemma 2: Observe that the fibre $F_n(B)$ (resp. $F_n(C)$) having the homotopy type of the iterated join $*^{n+1}\Omega B$ (resp. $*^{n+1}\Omega C$) implies that it is $((n+1)k-2)$ -connected. With the assumptions on k and n, $F_n(B)$ and $F_n(C)$ are simply connected. A homology argument shows that the induced map $F_n(B) \to$ $F_n(C)$ is an $(nk + r - 1)$ -equivalence and thus an $(r + 1)$ -equivalence.

Proof of Lemma 3: The map p induces a morphism between the following two long exact sequences coming from the cofibration $S^r \to B \to C$:

From $\varphi \circ \alpha \simeq *$ we deduce the existence of $\psi : C \to Y$ such that $\psi \circ \rho \simeq \varphi$. The elements $p \circ \psi$ and *id_C* of $[C, C]$ satisfy $p \circ \psi \circ \rho \simeq id \circ \rho$. By a theorem of D. Puppe [Hil67, Theorem 15.4] there exists $\xi' \in [S^{r+1}, C]$ such that $(p \circ \psi)^{\xi'} \simeq id_C$ where $(p \circ \psi)$ ^{ξ'} denotes the cooperation of ξ' on $p \circ \psi$ induced by the cofibration.

By hypothesis there exists $\xi \in [S^{r+1}, Y]$ such that $\xi' \simeq p \circ \xi$. Set $\sigma = \psi^{\xi}$. Then we have $p \circ \sigma = p \circ (\psi)^{\xi} \simeq (p \circ \psi)^{p \circ \xi} \simeq id_C$.

Proof of Theorem 3: Denote by $i_r: X^{(r)} \to X$ and $i'_r: X^{(r-1)} \to X^{(r)}$ the canonical inclusions and by $q_{n,r}^X$: $G_n(X^{(r)}) \to X^{(r)}$ the Ganea fibration. Let σ be any section of $\overline{\lambda}(q_n^X)$. The map i_r induces a morphism of fibrations between $\overline{\lambda}(q_{n,r}^X)$ and $\overline{\lambda}(q_n^X)$ which is an r-equivalence between the bases and an $(r + 1)$ equivalence between the fibres (by Lemma 2 and the hypothesis on λ). Also the Ganea fibrations split after looping. So with the homotopy long exact sequences we deduce that $\overline{\lambda}(i_r)$ is an r-equivalence. Therefore there exists $\overline{\sigma}$ such that in the following diagram

$$
\overline{\lambda}(G_n(X^{(r)})) \xrightarrow{\overline{\lambda}(i_r)} \overline{\lambda}(G_n(X))
$$
\n
$$
\overline{\lambda}(q_{n,r}^X) \Big| \overline{\rangle} \overline{\sigma} \qquad \overline{\lambda}(q_n^X) \Big| \overline{\rangle} \sigma
$$
\n
$$
X^{(r-1)} \xrightarrow{i'_r} X^{(r)} \xrightarrow{i_r} X
$$

 $\lambda(i_r) \circ \overline{\sigma} \simeq \sigma \circ i_r$ and $\lambda(q_{n_r}^{\Lambda}) \circ \overline{\sigma} \circ i'_r \simeq i'_r$. By Lemma 3 applied to the cofibration $\forall S^{r-1} \rightarrow X^{(r-1)} \rightarrow X^{(r)}$ we can choose an element $\xi' \in |\nabla S^{r}, X^{(r)}|$ such that $(\overline{\lambda}(q_{n,r}^X)\circ\overline{\sigma})^{\xi'}\simeq id$. Now, $\pi_r(\overline{\lambda}(q_{n,r}^X))$ being surjective, we can choose $\xi \in [\vee S^r, \overline{\lambda}(G_n(X^{(r)}))]$ with $\pi_r(\overline{\lambda}(q_{n,r}^X))(\xi) = \xi'$. Hence,

$$
\overline{\lambda}(q^X_{n,r})\circ\overline{\sigma}^{\xi}\simeq(\overline{\lambda}(q^X_{n,r})\circ\overline{\sigma})^{\xi'}\simeq id.
$$

We may homotope $\overline{\sigma}^{\xi}$ to a section σ'_{r} of $\lambda(q_{n,r}^{\chi})$ such that $\lambda(i_{r})\circ\sigma'_{r}\circ i'_{r} = \sigma\circ i_{r}\circ i'_{r}$. We can therefore find $\eta'' \in [\nabla S^r, \lambda(G_n(X))]$ with $(\lambda(i_r) \circ \sigma'_r)^{\eta} \simeq \sigma \circ i_r$. From

$$
\overline{\lambda}(q^X_n)\circ \overline{\lambda}(i_r)\circ \sigma'_r \simeq \overline{\lambda}(q^X_n)\circ \sigma \circ i_r
$$

we deduce that $\overline{\lambda}(q_n^X) \circ \eta''$ acts trivially on $\overline{\lambda}(q_n^X) \circ \overline{\lambda}(i_r) \circ \sigma'_r$. Then the element $\eta' := \eta'' - \sigma \circ \overline{\lambda}(q_n^X) \circ \eta'' \in [\vee S^r, \lambda(F_n(X))]$ satisfies $(\overline{\lambda}(i_r) \circ \sigma_r')^{\eta'} \simeq (\overline{\lambda}(i_r) \circ \sigma_r')^{\eta''} \simeq \sigma \circ i_r$. Let $\eta \in [\vee S^r, \lambda(F_n(X^{(r)}))]$ be an element which is mapped to η' by the map induced by $\lambda(F_n(X^{(r)})) \to \lambda(F_n(X));$ set $\sigma_r := (\sigma'_r)^{\eta}$. Then σ_r is still a section of $\overline{\lambda}(q_{n,r}^X)$ with $\overline{\lambda}(i_r) \circ \sigma_r \simeq \sigma \circ i_r$.

Proof of Theorem 4: Suppose that $\overline{\lambda}(q_n^X)$ admits a section σ . By application of Lemma 1 (i) we get a commutative diagram (up to sign):

1) If $\mathcal{H}'_{\sigma,\lambda} \simeq *$ we apply Lemma 3 to construct a map $\sigma' : Y \to \overline{\lambda}(G_n(Y))$ such that $\overline{\lambda}(G_n(\rho)) \circ \sigma \simeq \sigma' \circ \rho$ and $\overline{\lambda}(q_n^Y) \circ \sigma' \simeq id_Y$. By definition we have $\lambda cat(Y) \leq n.$

2) Let $\sigma' : Y \to \overline{\lambda}(G_n(Y))$ be a section of $\overline{\lambda}(q_n^Y)$. By Theorem 3 there exists a section σ of $\overline{\lambda}(q_n^X)$ such that $\sigma' \circ \rho \simeq \overline{\lambda}(G_n(\rho)) \circ \sigma$. From the diagram above we deduce immediately that $\overline{\lambda}(G_n(\rho))\circ \mathcal{H}'_{\sigma,\lambda} \simeq *$. This implies that $\lambda(F_n(\rho))\circ \mathcal{H}_{\sigma,\lambda} \simeq *$ by injectivity of $\pi_r(\lambda(F_n(Y))) \to \pi_r(\overline{\lambda}(G_n(Y)))$ and that $\mathcal{H}_{\sigma,\lambda} \simeq *$ by Lemma 2 and the hypothesis on λ .

3) Set $\tilde{\alpha} := \iota_{\lambda}(X) \circ \alpha: S^r \to \lambda(X)$ and $\overline{\alpha} := s \circ \alpha: S^r \to \lambda(G_n(X)).$ Note that $\lambda(q_n^X) \circ \overline{\alpha} = \tilde{\alpha}$ and, because of $H_{s,\lambda}(\alpha) = 0$, $\overline{\alpha} \simeq \iota_\lambda(G_n(X)) \circ \kappa_n \circ \Sigma \alpha^{\sharp}$. From naturality of ι_{λ} we have $\lambda(\rho) \circ \tilde{\alpha} \simeq *$ and we deduce from Lemma 1 (ii) that $\lambda(G_n(\rho)) \circ \overline{\alpha} \simeq *$. The universal property of pushouts and, for the right bottom square, [Van00, Proposition 2.5] give a homotopy commutative diagram (without the dashed arrow):

$$
S^{r} \xrightarrow{\alpha} X \longrightarrow X \cup_{\alpha} e^{r+1} \longrightarrow Y
$$

\n
$$
S^{r} \xrightarrow{\tilde{\alpha}} \lambda(X) \longrightarrow \lambda(X) \cup_{\tilde{\alpha}} e^{r+1} \longrightarrow \lambda(Y)
$$

\n
$$
\downarrow \downarrow \downarrow \downarrow \downarrow
$$

\n
$$
\downarrow \downarrow \downarrow \downarrow
$$

\n
$$
S^{r} \xrightarrow{\tilde{\alpha}} \lambda(q_{n}^{X}) \longrightarrow \lambda(X) \cup_{\tilde{\alpha}} e^{r+1} \longrightarrow \lambda(Y)
$$

\n
$$
S^{r} \xrightarrow{\tilde{\alpha}} \lambda(G_{n}(X)) \longrightarrow \lambda(G_{n}(X)) \cup_{\overline{\alpha}} e^{r+1} \longrightarrow \lambda(G_{n}(Y))
$$

where $\lambda(G_n(X)) \to \lambda(G_n(X)) \cup_{\overline{\alpha}} e^{r+1} \to \lambda(G_n(Y))$ is homotopic to $\lambda(G_n(\rho))$ and $\lambda(X) \to \lambda(X) \cup_{\tilde{\alpha}} e^{r+1} \to \lambda(Y)$ is homotopic to $\lambda(\rho)$.

From the hypothesis on λ and Proposition 1 one has a homotopical section \bar{s}_n to $\lambda(q_n^X)$; a look at its construction gives $\bar{s}_n \circ \tilde{\alpha} \simeq \bar{\alpha}$. Denote by $\bar{\bar{s}}_n$ and \tilde{q}_n the maps induced by \bar{s}_n and $\lambda(q_n^X)$ between the cofibres. The map $\varphi = \tilde{q}_n \circ \overline{\bar{s}}_n$ induced by $\lambda(q_n^X) \circ \overline{s}_n \simeq id$ is a homotopy equivalence [Qui67, Section I.3]. By composing $\bar{\overline{s}}_n$ with φ^{-1} we get a homotopical section \tilde{s}_n of \tilde{q}_n . The required homotopy lifting of $Y \to \lambda(Y)$ through $\lambda(q_n^Y)$ is the following composite:

$$
X \cup_{\alpha} e^{r+1} \longrightarrow \lambda(X) \cup_{\tilde{\alpha}} e^{r+1} \longrightarrow \lambda(G_n(X)) \cup_{\overline{\alpha}} e^{r+1} \longrightarrow \lambda(G_n(Y)). \quad \blacksquare
$$

Proof of Corollary 3: The triviality of the induced map $F_n(Y) \to F_{n+1}(Y)$ implies the triviality of $\lambda(F_n(Y)) \to \lambda(F_{n+1}(Y))$ and the image of the Hopf invariant $H_{\sigma,\lambda}(\alpha)$ in $\pi_*(\lambda(F_{n+1}(Y)))$ is zero. As in the beginning of the proof of Theorem 4 we construct a dashed arrow making commutative

In other words $\lambda cat(Y) \leq n+1$.

4.2. EXAMPLES. We come back to the chain of inequalities of Theorem 1 and exhibit examples of spaces for which a strict inequality occurs (except for $Pⁿ$ and *Qn).* For this we will apply Corollary 2.

Example 4: We use the notation and results of [Tod62, Proposition 13.9 page 179]. The composite $\beta := \alpha_1(3) \circ \alpha_1(2p) : S^{4p-3} \to S^{2p} \to S^3$ is a generator of $\pi_{4p-3}(S^3) = \mathbb{Z}_p$ such that $\Sigma \beta \not\cong *$ and $\Sigma^2 \beta \simeq *$. Denote by $w: S^4 \to S^3 \vee S^2$ the Whitehead bracket of the classes S^3 and S^2 and by $\gamma := w \circ \Sigma \beta : S^{4p-2} \to$ $S^4 \rightarrow S^3 \vee S^2$. Set $X = (S^3 \vee S^2) \cup_{\gamma} e^{4p-1}$. Then we claim $Q^1cat(X) = 1$ and $cat(X) = 2$ (cf. also [Sta98] for a different proof of $cat(X) = 2$).

The Hopf invariant of γ satisfies $\mathcal{H}(\gamma) = \mathcal{H}(w \circ \Sigma \beta) = \mathcal{H}(w) \circ \Sigma \beta$. Therefore $\sum \mathcal{H}(\gamma) \simeq *$ and $Q^1cat(X) = 1$ by Corollary 2. We are now reduced to proving that $\mathcal{H}(\gamma)$ is not trivial. Denote by f^{\sharp} the adjoint of a map f and observe that $\mathcal{H}(\gamma)^\sharp = \mathcal{H}(w)^\sharp \circ \beta$. The non-triviality of $\mathcal{H}(\gamma)$ is a consequence of the following lemma. It is certainly well known but we cannot find it in the literature.

LEMMA 4: Let $i, j \geq 2$. Let $w_{i,j}: S^{i+j-1} \to S^i \vee S^j$ be the Whitehead bracket *of the canonical inclusions* $\eta^i: S^i \hookrightarrow S^i \vee S^j$, $\eta^j: S^j \hookrightarrow S^i \vee S^j$. Denote by $F_{i,j}$ *the homotopy fibre of the first Ganea fibration associated to* $S^i \vee S^j$ *. The Hopf invariant associated to* $w_{i,j}$ *has for adjoint a map* $\mathcal{H}(w_{i,j})^{\sharp}$: $S^{i+j-2} \to \Omega F_{i,j}$.

Then there exists a map $\bar{p}: \Omega F_{i,j} \to \Omega S^{i+j-1}$ *such that the adjoint of* $\overline{p} \circ \mathcal{H}(w_{i,j})^{\sharp}$ is a map of degree $\pm 1: S^{i+j-1} \to S^{i+j-1}$.

Proof: By the Hilton-Milnor theorem [Whi78, page 515]:

$$
\Omega(S^i \vee S^j) \simeq \Omega S^i \times \Omega S^j \times \Omega S^{i+j-1} \times \cdots
$$

Recall that $w^\sharp_{i,j}$ is constructed using the commutator of $S^{i-1} \to \Omega S^i \to \Omega (S^i \vee S^j)$ and $S^{j-1} \to \Omega S^j \to \Omega (S^i \vee S^j);$ the extension of $w_{i,j}^{\sharp}: S^{i+j-2} \to \Omega (S^i \vee S^j)$ to $\Omega \Sigma S^{i+j-2}$ is the inclusion $\Omega S^{i+j-1} \to \Omega (S^i \vee S^j)$ in the above decomposition. Note that there is one homotopy section of $\Sigma \Omega(S^i \vee S^j) \rightarrow S^i \vee S^j$ up to homotopy. It follows that there is a map \overline{p} : $\Omega F_{i,j} \to \Omega S^{i+j-1}$ with the adjoint of $\overline{p} \circ \mathcal{H}(w_{i,j})^{\sharp}$ a map of degree $\pm 1: S^{i+j-1} \rightarrow S^{i+j-1}$.

Example 5: Let β : $S^{\bullet} \to S^3$ such that $\Sigma^{2n}\beta \not\cong *$ and $\Sigma^{2n+1}\beta \simeq *$ [Gra84, Theorem 12] or [Sta00, Corollary 9.2]. Denote by $w: S^4 \to S^3 \vee S^2$ the Whitehead bracket of the classes S^3 and S^2 and let $\gamma := w \circ \Sigma \beta$. Set $X = (S^3 \vee S^2) \cup_{\gamma} e^{\bullet+2}$. The method used in Example 4 gives $Q^{2n}cat(X) = 1$ and $Q^{2n-1}cat(X) = 2$.

The existence of $\beta: S^{\bullet} \to S^4$ such that $\Sigma^{2n-1} \beta \not\cong *$ and $\Sigma^{2n} \beta \simeq *$ allows with the same process the construction of a space $X = (S^3 \vee S^3) \cup_{\gamma} e^{\bullet+2}$ such that $Q^{2n-1}cat(X) = 1$ and $Q^{2n-2}cat(X) = 2$.

We remark that the examples $X = Q_p$, $p > 2$, of N. Iwase [Iwa98] satisfy $2 = cat(X) = Q¹cat(X) > Q²cat(X) = 1$. As for $X = Q₂$ of [Iwa98], it is such that $2 = cat(X) > Q^1cat(X) = 1$.

Example 6: For any $n \geq 1$ we denote by $X(n)$ a CW-complex which satisfies, as in Example 5, $Q^{2n-1}cat(X(n)) = 1$, $Q^{2n-2}cat(X(n)) = 2$ (by convention: $Q^0 cat = cat$. Set $Y = \vee_{n>1} X(n)$ and observe that Y (resp. $Y \times S^r$) dominates $X(n)$ (resp. $X(n) \times S^r$). We deduce from Corollary 2 and from [Iwa97] that Y is an **infinite** CW-complex such that $Qcat(Y) = 1$, $cat(Y) = 2$ and $cat(Y \times S^r) = 1$ $cat(Y) + 1$ for any $r \geq 1$. This justifies the restriction to a **finite** complex in Problem 2.

Example 7: Denote by $\alpha_1(3) \in \pi_{2p}(S^3)$ a generator of the *p*-component and by $w: S^4 \to S^2 \vee S^3$ the Whitehead bracket. We deduce from Lemma 4 that $QH(w \circ \Sigma \alpha_1(3)) \not\cong *$ and $\text{Hur } H(w \circ \Sigma \alpha_1(3)) \simeq *$. Therefore the space X = $(S^2 \vee S^3) \cup_{w \in \Sigma_{\alpha_1}(3)} e^{2p+2}$ satisfies $Qcat(X) = 2$ and $Mcat(X) = 1$.

We address now the relation between σcat and $Qcat$.

Example 8: (The Lemaire-Sigrist example revisited.) Denote by $w: S^5 \to \mathbb{C}P^2$ the attaching map of the top cell of $\mathbb{C}P^3$ and by $\gamma: S^6 \to \mathbb{C}P^2 \vee S^2$ the Whitehead bracket of w and S^2 . Set $Z = (\mathbb{C}P^2 \vee S^2) \cup_{\gamma} e^7$. We claim that $Qcat(Z) = 3$ and $\sigma cat(Z) = \sigma^{1}cat(Z) = e(Z) = 2.$

Observe that the rationalized space Z_0 satisfies $cat(Z_0) = Qcat(Z_0) = 3$ and $\sigma cat(Z_0) = e(Z_0) = 2$, [LS81]. We deduce that $3 \geq cat(Z) \geq Qcat(Z) \geq$ $Qcat(Z_0) = 3.$

Consider the first Ganea space $G_1(X)$ associated to $X := \mathbb{C}P^2 \vee S^2$. From the decomposition $\Omega(\mathbb{C}\mathrm{P}^2) \simeq S^1 \times \Omega(S^5)$, from B. Gray's formula [Gra71], and standard properties of Σ and Ω we see that $G_1(X)$ is a wedge of spheres. Among them we have $S^2_{(1)}$ corresponding to a generator of $\pi_2(\mathbb{C}P^2) = \mathbb{Z}, S^5$ corresponding to a generator of $\pi_5(\mathbb{C}P^2) = \mathbb{Z}$ and S^2 . So we have a homotopy equivalence $G_1(X) \simeq S_{(1)}^2 \vee S^5 \vee S^2 \vee \vee_i S^{n_i}.$

Let $\iota_1: S_{(1)}^{(1)} \to G_1(X), \iota: S^2 \to G_1(X)$ and $\iota_5: S^5 \to G_1(X)$ be the canonical inclusions. Let $\eta: S^3 \to S^2$ be the Hopf map. Then $q_1^X \circ \iota_1 \circ \eta$ is nullhomotopic and hence $\iota_1 \circ \eta$ is killed by the map $G_1(X) \to G_2(X)$. Hence we can find a section $X \to G_2(X)$. By $G_1(X) \to G_1(Z)$ the homotopy class of [t_5, t] is mapped to an element $\tilde{\gamma}$ of $kernel(\pi_*(q_1^Z))$. Therefore $\tilde{\gamma}$ will be killed by $G_1(X) \to G_2(Z)$. Since $\Sigma \gamma$ and $\Sigma \tilde{\gamma}$ are both nullhomotopic, we can find a section $\Sigma Z \to \Sigma G_2(Z)$, i.e., σ ¹cat(Z) \leq 2.

Since $2 = \sigma^1 cat(Z_0) \leq \sigma^1 cat(Z)$ we get that $\sigma^1 cat(Z) = 2$.

Remark: We note that the notion of *n*-LS-fibration [ST97] does not allow an efficient use of Hopf invariants. For instance, the fact that $id_{S^3} : S^3 \rightarrow S^3$ is a 1-LS-fibration implies that a 1-LS fibration cannot bring a characterization of the category of $S^3 \cup_{\alpha} e^k$.

PROPOSITION 6: *For any space with two cells Problem 2* has a *positive* answer.

Proof: Let $X = S^n \cup_{\varphi} e^p$. We may assume $cat(X) \geq 1$. If $cat(X) = 1$, then both statements are false. For $cat(X) = 2$ we refer to a result of [Iwa97]:

if $X = S^n \cup_{\varphi} e^p$ then $cat(X \times S^r) \leq cat(X)$ iff $\Sigma^r \mathcal{H}(\varphi) = 0$.

Appendix A. Dror Farjoun's construction

In this paragraph we recall a construction from [DF96, Chapter 1.F.2]. Let $\lambda: \mathcal{S} \to \mathcal{S}$ be a regular coaugmented functor and $\pi: E \to B$ in \mathcal{S} a fibration. We consider the simplex category Δ_B defined by:

 σ its objects are pairs $(\Delta[n], \sigma)$, $\sigma \in B_n$;

- a morphism $\alpha: (\Delta[n], \sigma) \to (\Delta[m], \tau)$ is a simplicial map $\alpha: \Delta[n] \to \Delta[m]$ such that $f_{\tau\circ\alpha} = f_{\sigma}$ where $f_{\sigma}: \Delta[n] \to B$ is the characteristic map of σ .

Denote by $\tilde{B}: \Delta_B \to S$ the forgetful functor determined by $(\Delta[n], \sigma) \mapsto \Delta[n]$ and let $\tilde{E}: \Delta_B \to S$ be the functor defined by the following pullback:

The projection $\tilde{E}(\Delta[n], \sigma) \to \Delta[n]$ defines a natural transformation $\tilde{E} \to \tilde{B}$. The homotopy colimits (in S) of the functors \tilde{B} , $\lambda \circ \tilde{B}$, \tilde{E} and $\lambda \circ \tilde{E}$ give a commutative diagram

$$
\begin{array}{ccc}\n\text{hocolim }\lambda\circ\tilde{E}\longleftarrow\text{hocolim }\tilde{E}\longrightarrow E \\
\downarrow&&\downarrow&&\downarrow \\
\text{hocolim }\lambda\circ\tilde{B}\longleftarrow\text{hocolim }\tilde{B}\longrightarrow B\n\end{array}
$$

The functor $\overline{\lambda}$ is constructed with a homotopy pullback-pushout operation: P is the homotopy pullback (hpb) and $\overline{\lambda}(E)$ the homotopy pushout (hpo) defined in the following diagram:

This induces a factorization $E \to \overline{\lambda}(E) \to B$ of π . All diagrams

$$
\lambda(\tilde{E}(\Delta[m], \tau)) \xrightarrow{\sim} \lambda(\tilde{E}(\Delta[n], \sigma))
$$
\n
$$
\downarrow \qquad \qquad \downarrow
$$
\n
$$
\lambda(\Delta[m], \tau) \xrightarrow{\sim} \lambda(\Delta[n], \sigma)
$$

are homotopy pul!backs. Hence by [Pup74] this implies:

PROPOSITION 7 ([DF96, Chapter 1, Theorem F.3]): For $b \in B$ let F be the fibre *of* π *over b and* \overline{F} *the homotopy fibre of* $\overline{\lambda}(E) \rightarrow B$ *over b. Then the induced map* $F \to \overline{F}$ *is naturally equivalent to the coaugmentation* $F \to \lambda(F)$.

Appendix B. Unpointed version of $\Omega^n \Sigma^n$

We now construct an unpointed version $Q^n: \mathcal{S} \to \mathcal{S}$ of $\Omega^n \Sigma^n: \mathcal{S}_* \to \mathcal{S}_*$ where \mathcal{S} (resp. S_*) is the convenient category of compactly generated (resp. well pointed compactly generated) spaces. For that we recall first the notion of unpointed suspension:

Definition 5: Let $I = [0, 1]$. The unreduced suspension of $Y \in S$ is $\widetilde{\Sigma}(Y) :=$ $(Y \times I)/ \sim$, where $(y, 0) \sim (y', 0)$ and $(y, 1) \sim (y', 1)$ for any $y, y' \in Y$. By induction we define the *n*-unreduced suspension of $Y \in S$ by $\widetilde{\Sigma}^n(Y) = \widetilde{\Sigma} \widetilde{\Sigma}^{n-1}(Y)$.

We will number the coordinates from right to left; i.e., an element of $\widetilde{\Sigma}^n(Y)$ is an equivalence class denoted by $[t_n,\ldots,t_1, y]$. Observe that we have a canonical map $j_n: \partial I^n \to \widetilde{\Sigma}^n(Y), (t_n,\ldots,t_1) \mapsto [t_n,\ldots,t_1,y]$ (y arbitrary).

Definition 6: Given $Y \in \mathcal{S}$ we define $Q^n(Y)$ as the set of maps $\omega: I^n \to \widetilde{\Sigma^n}(Y)$ such that $\omega_{|\partial I^n} = j_n$. The map $c: Y \to Q^n(Y)$, $y \mapsto c(y)$, $c(y)(t_n, \ldots, t_1) =$ $[t_n, \ldots, t_1, y]$ is a coaugmentation.

There are bonding maps $b_n: Q^n \to Q^{n+1}$ compatible with the coaugmentations given by $b_n(\omega)(t_{n+1},..., t_1) = [t_{n+1}, \omega(t_n,..., t_1)]$ for $\omega \in Q^n(Y)$.

Set $Q(Y) := \lim_{\rightarrow} Q^{n}(Y)$.

Note that for $X \in \mathcal{S}_*$ the canonical map $\widetilde{\Sigma}^n(X) \to \Sigma^n(X)$ (where $\Sigma^n(X)$ is the reduced suspension) is a relative homeomorphism $(\widetilde{\Sigma}^n(X), \widetilde{\Sigma}^n(*)) \to (\Sigma^n(X), *)$ and that $\widetilde{\Sigma}^n(*)$ is contractible. Moreover, $\widetilde{\Sigma}^n(X) \to \Sigma^n(X)$ induces a map $Q^n(X) \to \Omega^n \Sigma^n(X)$.

PROPOSITION 8: (1) The canonical map $Q^n(X) \to \Omega^n \Sigma^n(X)$ is a homotopy *equivalence.*

(2) For Y, $Z \in \mathcal{S}$ there is a canonical map $Q^n(Y) \times Z \to Q^n(Y \times Z)$ compatible *with the coaugmentations.*

(3) There is a natural transformation $m: Q^n Q^n \to Q^n$ such that Q^n together *with c and m is a triple.*

Proof: (1) Note that for all $\omega \in Q^n(X)$ the restriction of ω to the boundary ∂I^n is equal to the restriction to ∂I^n of $I^n \to \widetilde{\Sigma}^n(*) \to \widetilde{\Sigma}^n(X)$. Thus dividing ∂I^{n+1} in two halves along an equator ∂I^n we obtain an element in $\Omega^n\widetilde{\Sigma^n}(X)$ by ω on one half and the composite $I^n \to \widetilde{\Sigma}^n(*) \to \widetilde{\Sigma}^n(X)$ on the other half. This gives an equivalence $Q^n(X) \to \Omega^n \widetilde{\Sigma^n}(X)$. Composing this map with $\Omega^n \widetilde{\Sigma^n}(X) \to$ $\Omega^n \Sigma^n(X)$ we obtain the announced equivalence. Note that it is compatible with the bonding maps.

(2) We define $\eta: Q^n(Y) \times Z \to Q^n(Y \times Z)$ as follows. For $\omega \in Q^n(Y)$ write $\omega(t_n, \ldots, t_1) = [\tilde{t}_n, \ldots, \tilde{t}_1, \tilde{y}];$ then $\eta(\omega, z)(t_n, \ldots, t_1) = [\tilde{t}_n, \ldots, \tilde{t}_1, (\tilde{y}, z)].$ This definition does not depend on the choice of the representative in the class $\omega(t_n,\ldots,t_1)$ (because $\omega_{|\partial I^n}$ is the fixed canonical map j_n). One checks immediately that the map is compatible with the coaugmentations.

(3) We define $m: Q^n Q^n(Y) \to Q^n(Y)$ by the following device. Given $\omega: I^n \to I^n$ $\widetilde{Y}^n Q^n(Y)$ write as above $\omega(t_n, \ldots, t_1) = [\tilde{t}_n, \ldots, \tilde{t}_1, \tilde{\omega}]$ with $\tilde{\omega} \in Q^n(Y)$. Then set $m(\omega)(t_n,\ldots,t_1) = \tilde{\omega}(\tilde{t}_n,\ldots,\tilde{t}_1)$. As above this definition does not depend on the choice of representative $[\tilde{t}_n,\ldots,\tilde{t}_1,\tilde{\omega}]$. A calculation shows that we have obtained a triple. 1

References

[Ada78] [BE74] [BG62] [BH60] [BK72] [CM95] [DF96] [EKMM97] $[Fe189]$ [FHL98] [Fox41] [Gan71] J. F. Adams, *Infinite Loop Spaces,* Annals of Mathematics Studies, Vol. 90, Princeton University Press, 1978. M. G. Barratt and P. J. Eccles, *F+-structures-I: A* free *group functor for stable homotopy theory,* Topology 13 (1974), 25-45. I. Berstein and T. Ganea, *The category of a* map *and of a cohomology class, Fundamenta Mathematicae* 50 (1962), 265-279. I. Berstein and P. J. Hilton, *Category and generalized Hopf invariants,* Illinois Journal of Mathematics 4 (1960), 437-451. A. K. Bousfield and D. M. Kan, *Homotopy limits, completions and loealizations,* Lecture Notes in Mathematics 304, Springer-Verlag, Berlin, 1972. G. Carlsson and R. J. Milgram, *Stable homotopy and iterated loop spaces,* in *Handbook of Algebraic Topology,* North-Holland, Amsterdam, 1995, pp. 503-583. E. Dror Farjoun, *Cellular spaces, null spaces and homotopy localization,* Lecture Notes in Mathematics 1622, Springer-Verlag, Berlin, 1996. A. K. Ehnendorf and I. Kriz and M. A. Mandell and J. P. May, *Rings, modules, and algebras in* stable *homotopy theory. With an appendix by M. Cole,* Mathematical Surveys and Monographs, Vol. 47, American Mathematical Society, Providence, RI, 1997. Y. Fdlix, La *Dichotomie Elliptique-Hyperbolique en Homotopie Rationnelle, Astérisque, Vol. 176, Soc. Math. France, 1989.* Y. Félix, S. Halperin and J.-M. Lemaire, *The rational LS category of products and of Poineard duality complexes,* Topology 37 (1998), 749- 756. R. H. Fox, *On the Lusternik Sehnirelmann category,* Annals of Mathematics 42 (1941), 333-370. T. Ganea, *Some problems on numerical homotopy invariants,* in *Symposium in Algebraic Topology 1971,* Lecture Notes in Mathematics

249, Springer-Verlag, Berlin, 1971, pp. 23-30.

