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ABSTRACT

In this paper a variant of Lusternik—Schnirelmann category is presented
which is denoted by Qcat(XX). It is obtained by applying a base-point
free version of @ = QX fibrewise to the Ganea fibrations. We prove
cat(X) > Qcat(X) > ocat(X) where ocat(X) denotes Y. Rudyak’s strict
category weight. However, Qcat(X) approximates cat(X) better, be-
cause, e.g., in the case of a rational space Qecat{X) = cat(X} and ocat(X)
equals the Toomer invariant.

We show that Qcat(X xY) < Qcat(X)+ Qcat(Y'). The invariant Qcat is
designed to measure the failure of the formula cat(X x S7) = cat(X) +1.
In fact for 2-cell complexes Qcat(X) < cat(X) & cat(X x 87) = cat(X)
for some r > 1.
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‘We note that the paper is written in the more general context of a functor
A from the category of spaces to itself satisfying certain conditions; A = @,
QPE", Sp™ or Ly are just particular cases.

0. Introduction

Let S (resp. S.) be the category of simplicial sets (resp. pointed simplicial sets);
we will also denote convenient categories of spaces by these symbols. The base
point of X € S, is always denoted by x € X.

0.1. FIBREWISE APPLICATION OF FUNCTORS AND LUSTERNIK—SCHNIRELMANN
CATEGORY. Let A: § — 8 (or S, — S.) be a functor together with a natural
transformation ¢y: id — X as coaugmentation. If A\: § — § is a coaugmented
functor and X € 8,, then A(X) is canonically pointed by * = X — A(X), thus
A defines a functor A': S, = S.. Throughout this work we suppose that:
— the map * — A(x) coming from the coaugmentation is a weak equivalence;
— ) preserves weak equivalences.
Such a X is called a regular coaugmented functor.

For any f € S there exists a functorial decomposition f = p; o j; such that
Jf is a cofibration and a weak equivalence and p; a fibration. We fix such a
construction and by definition call p; the fibration associated to f. For any
point z in the target of f the fibre of py over z is called the homotopy fibre
of f over z. If f € S, the homotopy fibre of f indicates the homotopy fibre
OVET *.

By [DF96] (see Appendix A) a regular coaugmented functor A\: S —+ S admits
an extension to a functor A from the category of spaces over a space to itself such
that there are natural transformations

i5(E) — r5(E)

E NE) ME)
pl X(p)l l/\(p)
B=——B A(B)

over idg and 1)(B) respectively. Moreover, for p: E — B, the homotopy fibre
of A\(E) = B over a point  is naturally equivalent to A(F), where F' is the
homotopy fibre of p over . We remark that the previous consideration about
pointed versions for maps in the image of A works also with A
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Applying this construction to the Ganea fibrations we obtain variants of
Lusternik-Schnirelmann category. First recall the Ganea construction for
amap m E — Bin S,.

Definition 1: Let go: Go(E, 7) — B be the fibration associated to = and suppose
the fibrations ¢;: G;(E,7) — B have been constructed for i < k — 1. Then we
define ¢j: Gx_1(E, ) UC(Fgx-1) = B by qfchk_l(Em) 1= qx_1 and qLIC(Fk—l) = %
where C(Fy_1) is the cone on the fibre Fj_y of qx—1. Let qx: Gx(E,n) - B
be the fibration associated to ¢;. In the particular case = = (* — B) we write
dk: Gk (B) — B.

We apply now the fibrewise construction to these fibrations (the dashed arrows
correspond to homotopy sections or liftings that are described below):

i (Fn(E,T))
—

E,(E,n) AMFL(E,m)) FME, )
l 5(Gn(E,m)) _ l r5(Gn(E,m)) l
Gr(E,m) ———— XN(Gp(E, 1)) ———> MGn(E, 7))
in T X(qn) ..'.0 /\(qn)l p
B B~ A(B)

tx(B)

where F}(E,7) is the homotopy fibre of A(g,). In such a diagram we may
consider the existence of a homotopy section 7 of ¢,, a homotopy section o of
A(gn), a homotopy lifting s of ¢y(B) through A(q,) or a homotopy section p of
Algn). The existence of 7 is the Ganea definition of the normalized LS-category
of m, catg(m), being less than or equal to n. For the others we set:

Definition 2: Let A\: § — S be a regular coaugmented functor and 7: £ — B in
S«. Then:

- the Ganea A-category of m, Acat(7), is the least integer n (or oo} such
that A(g,) admits a section o up to pointed homotopy:;

—the Ganea \,-category of w, A,catg(7), is the least integer n (or oo) such
that there exists s: B — MG, (E, 7)) satisfying A(gn) 0 s ~ ¢ (B);

- the Toomer A-invariant of 7, e, (7}, is the least integer n (or oo) such
that A(g,) admits a section p up to pointed homotopy.

In the particular case 7 = (x — B) we write Acat(B) := Acatg(x — B),
Meat(B) := Meatg(* — B) and e)(B) = ex(x — B).

As we will see below, this presentation unifies the following approximations of
the Lusternik—Schnirelmann category:
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— Mcat of a rational space [HL88] is a special case of Acats [SS99],

— the strict category weight [Rud99], [Str00], [Van00] fits into the setting of
Meate,

— the Toomer invariant introduced in [Too74] is equal to ey for M the abelian
group completion of A = Sp™, cf. Example 2.

If 7 is a section of g, we get a section of A(g,) by

0= 15(Gn(E,m))oT.
In the same way, if o is a homotopy section of A(g,) the composite
s:=1r5(Gn(E,7m))c0
is a lifting up to homotopy of ¢x(B) through A(g,). That is:
cata(m) > Acatg(m) > Meata(nm).

With an extra hypothesis the existence of a lifting up to homotopy s implies the
existence of a homotopical section of A(g,) (see the end of Section 1):

PROPOSITION 1: Suppose that A is a regular coaugmented functor equipped with
a natural transformation A = A o A — X\ whose composition with A(¢) is equal
to the identity A — A% — \. Let s: B — MG, (E, 7)) such that A\(g,)os ~ 1,(B).
Then there exists a homotopical section p: A(B) = A(G,(E, 7)) of A(g,) and we
have Aycatg(m) = ex(w).

This applies in particular if A together with the coaugmentation and the trans-
formation A2 — X constitutes a triple (see Section 2).

In Definition 2 the subscript ¢ is chosen to make a distinction from another no-
tion of category of a map due to Fox [Fox41], Berstein and Ganea [BG62] (see also
Section 7 of [Jam78]) which admits also variants with a fibrewise construction.

0.2. UNPOINTED VERSION OF POINTED FUNCTORS. In the fibrewise construc-
tion X associated to a functor A\: S — S the basepoint free sitnation is essential
and we first meet the problem that the examples of functors that we have in mind,
such as the infinite symmetric product, need a basepoint. Therefore for any reg-
ular coaugmented functor p: S, — S, we define a canonical functor p*: § = S
called basepoint free functor associated to p:

For Y € S we denote by Y+ € S, the space Y with an extra point added
and considered as the basepoint. Let * — *+ — pu(x+) be the map obtained
from the canonical inclusion and the coaugmentation. Denote by %, — p(*+)
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the fibration associated to the composition * — pu(x+). The functor Y —
pt(Y) is defined by the following pullback:

pH(Y) — u(¥Y'+)

|

0 ——> p(s+)

By naturality the composite Y — Y+ — p(Y+} — p(x+) factorizes as Y — x —
p(*x+) and we get a coaugmentation Y — p*(Y) from the universal property of
pullbacks. Note that u*(Y) is naturally equivalent to the homotopy fibre
of u(Y+) — u(x+) over * € pu(x+).

We will say that a coaugmented functor pu: S, — S, has a basepoint free
version if there exists a coaugmented functor A\: § — § and a natural transfor-
mation between A and p compatible with the coaugmentations and which is a
weak equivalence for any X € S,. Sometimes, as in Proposition 4 below, p* is a
basepoint free version of p.

Let £ (resp. ) be the reduced suspension (resp. the loop space) in S,. In
this paper we are mainly concerned with the functors M = Sp*>°, Q"¥", Q =
lim_, Q"™ and their basepoint free functors M+, P* = (Q"T™)+ Qt. We
also consider the localization functor Ly [DF96]. The functors M and @ are
particular cases of a more general construction, the infinite delooping associated
to any S-algebra [Ada78], [EKMM97].

We will see that M+ (resp. Q) is a basepoint free version of M (resp. Q). For
Q"E" the situation is more complicated: we construct a basepoint free version
Q": § — S which is not homotopically equivalent to P = (Q2"3")*. We have a
general comparison theorem between all these invariants:

THEOREM 1: Let m: E — B in S, and n > m. Then we have the following series
of inequalities:

cate(m) >QMcatg(m) > Q" catg(m) > Ptcatg(w)
>Qcatc(n) > Mcatg(r) > ep(n).

The proof will be given after Example 3 of Section 2.

For rational spaces all the invariants of Theorem 1, except the Toomer
invariant, coincide. In fact, in this case, examples for the strict inequality
Mecat(B) > ep(B) can be found in [Fé189, Théoreme 12.4.1]. In the last section
we will give examples of spaces which show that all the inequalities can be strict
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except possibly Q"cate > P"catg. The inequalities in Theorem 1 result from
the existence of natural transformations between the related functors.

The functions P"catg and Qcatg can be compared with stabilized variants of
Lusternik-Schnirelmann category studied in [Rud99}, [Str00], [Van98), [Van00).

Definition 3: Given m: E — B in S,, let o’catg(r) be the least integer n (or o)
such that X!G,,(E,r) — !B admits a right homotopy inverse. For simplicity
we shall write ocatg for o™ catg.

From the adjunction formula between Q¢ and ¢ it follows that o'catg(mw)=
Qicatg(r) and therefore, as a particular case of the inequality Acatg(w) >
Aycate(n) from above, we obtain:

PROPOSITION 2: Let (m: E — B) € S.. Then one has Qcatg(m) > acatg(nm)
and Qicatg(m) > o'catg(r).

0.3. THE INVARIANTS AND CARTESIAN PRODUCTS. It was a question of Ganea
[GanT71] called the Ganea conjecture whether the equality cat(Y x S7) =
cat(Y) + 1 holds for Y connected and r > 1. By a result of N. Iwase [Iwa98]
this is not always true. It is true, however, that ocat(Y x S™) = gcat(Y} + 1 by
[Rud99], [Van00]. For rational simply connected spaces Y, Z of finite type over
the rationals the general formula cat(Y % Z) = cat(Y) + cat(Z) holds [FHL98]
(cf. [Jes90] and [Hes91] for Z = S7).
About our invariants, in particular about Qcat, we can state the following:

THEOREM 2: LetY, Z € S,. Then for A= Q, P", Q", M or for A a localization
functor Ly we have

Acat(Y x Z) < Acat(Y') + Acat(Z).

Moreover, the corresponding inequality holds also for A,cat.

Remark: The equality Qcat(X x S™) = Qcat(X) + 1 is true if Qeat(X) =
ocat(X). For then

Qcat(X x 8"y < Qecat(X) +1=ocat(X)+1=0ccat(X x 8")
and, by Proposition 2,

Qcat(X x S7) > geat(X x §7) = Qcat(X)+ 1.
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0.4. Hopr INVARIANTS. Finally we introduce the notion of Hopf invariants
adapted to our situation and prove that they determine if Acat grows when at-
taching a cell. We also apply them to find examples where the invariants cat,
Q"cat, Qcat, Mcat, ocat are different.

Recall that the counter-examples of Iwase [Iwa98] to the Ganea conjecture are
complexes X = Y U, €P such that the Hopf invariant of ¢ is not zero but some
suspension of it is zero. This phenomenon is, by the definition of Qcat, ruled out
for the corresponding Hopf invariant. Therefore we may state:

PRrROBLEM 1: Does Qcat satisfy the analogue of the Ganea conjecture, i.e., for X
connected and r > 1 does Qcat(X x S™) = Qecat(X) + 1 hold?

Indeed, L. Vandembroucq [Van01] answered the question in the positive for
finite complexes X.

It follows that for finite connected CW-complexes X with Qcat(X) = cat(X)
the Ganea conjecture holds for X. We would like to conjecture that the reverse
implication is also true:

PRrROBLEM 2: Let X be a finite connected CW-complex. If Qeat(X) < cat(X)
then there exists r > 1 such that cat{(X x S™) = cat(X).

In our application of Hopf invariants we verify this for 2-cell complexes. We
also construct an infinite CW-complex X such that

Qcat(X) < cat(X) and cat(X x S™)=cat(X)+1 foranyr>1.

We may remark also that this example allows a variation of Problem 2 as: Let
X be a connected CW-complex. Then Q"cat(X) < cat(X) if, and only if,

cat(X x §") = cat(X).

We mention finally that, under some restrictions on dimension and connec-
tivity, a mapping version of Problem 2 is proved for rational spaces in [Sta98].

The paper is organized as follows. In Section 1 we recall some more properties
of Dror Farjoun’s fibrewise application of regular functors. We also study the
basepoint free functor associated to a coaugmented functor S, — S, and prove
Propostion 1. In Section 2 we discuss the case of the functors @, the abelian group
completion M of Sp*> and 2"¥". In fact we defer the topological construction of
a basepoint free version of 2"%" to Appendix B. In Section 3 we prove Theorem
2 and in Section 4 we present the theory of Hopf invariants for Acat and A,cat.
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1. Fibrewise application of functors

1.1. CONSEQUENCES OF DROR FARJOUN’S CONSTRUCTION. Let A: S — S be
a regular coaugmented functor. Let m: E — B be a fibration and let E — A(E)
over tdg be the construction of Dror Farjoun referred to in the introduction. For
the convenience of the reader we will describe it in Appendix A. Directly from it
we deduce:

PROPERTY 1: Let m: E — B be a fibration with B connected. Let A{,A2: S — 8
be two regular coaugmented functors and L£: A\; — Ae be a natural transformation
compatible with the coaugmentations. Then L induces a natural transformation
over B, C: Xl — Xs. As a consequence we have

Areatg{m) > Azcata(w).

Moreover, if £L(Y) is a weak equivalence for any Y € S then L(E) is a weak
equivalence for any E and

Aieatg(m) = Aqcatq(n).

1.2. BASEPOINT FREE VERSION OF pu: S, — S.. We now study the relation
between x and the basepoint free functor u*: & — S defined in the introduction.
The following two properties are immediate:

PROPERTY 2: Let 1, p2: S« — S« be two regular coaugmented functors. Let
L: p1 — pe be a natural transformation compatible with the coaugmentations.
Then L induces a natural transformation £L*: u} — pd. Moreover, if £(X) is
a weak equivalence for any X € S, then L1 (Y) is a weak equivalence for any
Y es.

In the particular case of the functor u*: & — S, Proposition 7 of Appendix A
implies:

PROPERTY 3: Let u: S, — S, be a regular coaugmented functor and p*t: § — S
the associated basepoint free functor. Let m: E — B in S, be a fibration with
fibre F. Then the homotopy fibre of u*(E) — B is equivalent to the homotopy
fibre of p(F+) — p(x+) over *.

If we start from a basepoint free coaugmented functor A: & — S, we may
compare \ with the associated free construction of the associated functor A': S, —
Sxt
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PROPOSITION 3: Let A\: § = S be a regular coaugmented functor. Then there
exists a natural transformation A — (X')™ compatible with the coaugmentations.

We now state a sufficient condition for ¢ and (u*) to be equivalent:

Let p: S« = S.« be a regular coaugmented functor with values in the category
G of grouplike spaces (we assume that the base point of a grouplike space is its
unit element). For X € &, let * — u(X) be the composition * — u(x) — p(X)
and denote by *,(xy — p(X) the fibration associated to x — u(X).

Denote by X+ — X the canonical map in S, (taking + to the basepoint of
X) and by F' the pullback of *,xy = 1(X) and p(X+) — p(X). The universal
property of pullbacks gives a factorization of u(x+) — pu(X+):

¥ \

N
P p(X+)

|

*u(X) — u{X)

Since the homotopy fibre F of (X +) — p(X) over * is equivalent to F', we can
view ¢ as a map into F.

ProPoOSITION 4: Using the notation above suppose that o1: p(x+) — F is a
weak equivalence and mo(u(X+)) — mo(p(X)) is surjective. Then the composite
pH(X) = p(X+) = p(X) is a weak equivalence.

Proof of Proposition 3: In the following square, * — A(x) is a weak equivalence
and a cofibration and x) — A(*+) a fibration. Therefore there exists the dashed
arrow making the diagram commutative:

— %k

A() —> A(x+)

The result follows from the definition of (\')¥ as a pullback and the existence of
a factorization of the composite A(X) — AMX+) = A(x+) as A(X) = A(x) —
A(x+). 1
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Proof of Proposition 4: First we look at the different base points. The universal
property of pullbacks gives a factorization of some canonical maps:

¥ ——> p(*+)

Therefore ut(X) € S, and j(x) = . Note also that the canonical map (X+ —
X) € S, induces (p(X+) = (X)) € G, with neutral element + (resp. *) in
p(X+) (resp. p(X)).

The map (p(X+) — p(*+)) € G admits a section up to homotopy ¢ = g3 001
which gives a homotopy equivalence ¢: u(x+) x pH(X) — uw(X+), (a,B8) —
o2(o1(a)). 71 .j(B). The result follows now from the five lemma applied to the
following homotopy commutative diagram of homotopy fibrations:

F—2 > u(X+) #(X)

d k |

p(et) —> p(x+) x pt(X) — pu*(X)

with u(x+) = p(x+) x gt (X), a = (a,*). |
We end this section with the

Proof of Proposition 1: This follows directly from the following diagram

A (G (E, 7)) — MGn(E, 7))

A
y lkz(qn) ih(«m
)

A(B A2(B) A(B).

Alea(B))

The left triangle homotopy commutes because A(g,)os ~ ¢)(B) and A, preserving
weak equivalences, preserves the homotopy relation. |
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2. Specific constructions: Q"E", QY Sp™

Example 1: The functor Q@ = Q°°X*° satisfies the assumptions of Proposition 4.
In fact let X € S,. The homotopy groups of Q(X) constitute a reduced ho-
mology theory. From the cofibration sequence (x+) — (X+4) — X (which
admits a retraction (X+) — (*+)) we deduce that the homotopy sequence of
Q(x+) » Q(X+) — Q(X) decomposes into split short exact sequences. There-
fore QT (X) — Q(X) is a homotopy equivalence. We also note that this statement
is a particular case of [BE74, Corollary 7.4}].

Example 2: Let R be a commutative ring with unit 1. For X € S denote
by R @ X the free R-module generated by X. If X € S, we define Mpr(X) :=
R® X/R® *. For R = Z we obtain in particular M (X). Proposition 4 ap-
plies to Mg and M*(X) is the simplicial set with n-simplices the finite linear
combinations " r;o; of n-simplices of X with > r; = 1. This basepoint free
version of Mz(X) occurs for example in [BK72]. If X € S, is connected M (X)
coincides with the infinite symmetric product Sp™ (X).

Remark that Q1 and My are examples of triples.

Example 3: For the construction of a basepoint free version @™ of Q"¥™:
S. — S, we refer to Appendix B. We remark that the basepoint free construction
P™ = (Q"E™)* is not homotopically equivalent to Q™.

Proof of Theorem 1: Property 1 is the key point for the comparison between
two invariants: we need only to exhibit natural transformations compatible with
the coaugmentations.

o There is a natural transformation Q — My compatible with the coaugmenta-
tions (see, e.g., [CM95, 7.3]). An easy way to construct it is to use the combinato-
rial model of Barratt and Eccles [BE74]. Thus we have Qcatg(7) > Myzcatg(r).

e If m < n the natural transformation @™ — Q™ in Top gives Q™ catg(m) >
Q"catg(m); cf. Appendix B.

e From Proposition 3 we get a natural transformation Q" — ({Q™))*. By
Appendix B there is a natural transformation (Q™)" — Q"E"; thus composing
Q" = ((Q™)")* — (2"E™)* provides a natural transformation Q" — P™.

e The inequality P"catg(n) 2> Qcatg(n) comes from the natural transforma-
tion Q*E" — XX,

e The existence of a homotopical section to M (g,) could be chosen as a defini-
tion for Toomer’s invariant. Therefore Mcat(X) > ep(X) is a direct consequence
of Proposition 1.
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o The remaining inequality catg(7) > Q™catg(w) is obvious. ]

3. Product formulae

The proof of Theorem 2 will be based on the following result of [SS99]: Let
A: 8§ — S be a regular coaugmented functor. If there is a natural transformation
AY) x MZ) = MY x Z) which is compatible with the coaugmentations, then
the product formula Acat(Y x Z) < Acat(Y) + Acat(Z) holds. The corresponding
formula for A,cat follows even more easily.

PROPOSITION 5: Suppose that A\: S — S is coaugmented by ty: id — A. Assume
that there are natural transformations A(Y) x Z — MY x Z) and m: A2 — A
which are compatible with the coaugmentations.

Then there is a natural transformation A(Y) x A(Z) - MY x Z).

Proof:  The transformation consists of the composition A(Y) x A(Z) —
MY x A(Z)) = A2(Y x Z) = MY x Z). |

Remark: 1If X is as in Proposition 1, then there exists m with m o ¢, (d(Y)) =
id)\(y) forY € S.

COROLLARY 1: Let u: S, — S, be coaugmented such that there exist natural
transformations p(X) x X' — u(X x X') and p?(X) — p(X) compatible with
the coaugmentations.

Then there is a natural transformation p+(Y)xu*(Z) — pt (Y x Z) of functors
Sx8§—=S.

Proof: Let i(Y) = u(Y+) for Y € S. Then it suffices to show that 7 satisfies
the assumptions on A of Proposition 3.

(@) B(Y)x Z = p(Y+) x Z = p(Y+) x (Z4) = p((Y+) x (Z+)) =
w((Y x Z)+) = (Y x Z). The last arrow is induced by the canonical map

Y+) x (2 ) (¥ x 2)+

(b) F2(Y) = ul(u(Y ) ) = (u(V4)) > p(¥+) = B(Y). The first arrow
is induced by the map (u(Y+))+ — p(Y+) which is the identity on p(Y'+) and
maps + to the basepoint + € u(Y+). ]

Proof of Theorem 2: We need only to observe from Proposition 8 of Appendix
B that the basepoint free versions of @ and Q"™ satisfy the assumptions of
Proposition 5.
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The combinatorial models I' for Q°E* of [BE74] and I'" for Q"E" of [Smi89]
are convenient too. It has been shown directly in [BE74] that T' in particular
satisfies the assumptions of Corollary 1. A close look at the combinatorial details
shows that this is also true for I C I'. Thus the functor P™ satisfies the
conditions of Proposition 5.

For u = Q"E" we can also argue topologically. The second transformation
needed in Corollary 1 exists for ;1 but —perhaps— not the first one. However, we
show that 7 admits a natural transformation f(Y) x Z — B(Y x Z) compatible
with the coaugmentations. It follows that pu* (hence P") is a functor as in
Proposition 5.

To give the required formula we write (Y +) = S" A (Y+) = 8" x Y where
x: S, X § = 8, is the halfsmash. Then we have

TM(YXxZ)+)=S"x (Y xZ)=(S"xY) % Z.

We define &: Q"E"(Y+) x Z — Q"E*((Y x Z)+) by ®(w,2)(t) = [w(t),?]
where w: S™ = T™(Y+), t € §”, and [w(t), z] denotes the class of (w(t),z) in
(8" xY)xZ.

For the localization functor, Ly, we observe [DF96, pages 21-23] the existence
of a natural transformation Ly(Y) x Z — L#(Y x Z) which gives a natural
transformation Ly(Y) x Ly(Z) = LyL#(Y x Z). The coaugmentation induces a
weak equivalence Ly — L¢Ly and we deduce Lycat(Y x Z) = LyLycat(Y x Z) <
Lycat(Y) + Lycat(Z). |

4. Hopf invariants

Let X € S, and a: S™ — X be a map with cofibre Y = X U, e™ 1.

We will characterize the relationship between the different A LS-type invariants
of X and VY in terms of a homotopy class associated to a and called a Hopf
invariant. We use the presentation of {Iwa98]. For A = id this coincides with the
Berstein-Hilton definition [BH60] (see [Van98, Proposition 3.2.7] for a detailed
proof). In this section we will make no distinction between maps and (pointed)
homotopy classes of maps.

4.1. DEFINITION AND PROPERTIES. Consider first the adjoint af: S™~1 — QX
of a whose supension gives a homotopy class Saf: S” — TQX into the first
Ganea space associated to X. By composition with the maps nff : YOX -
Gn(X) coming from the construction of the Ganea fibrations we have maps
kX o Tat: 87 — G,(X). We work with the absolute case and the situation
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deseribed in the introduction becomes:

=

(X) ———= M (X) —— > F(X)

gr —_romat G"IXJ O 36 0) s\ (Ga(X))

» e
X«ml T lx(q,’f)

r yo
§r————X X T A(X)

Recall that ) (Gn(X)) = r5(Gn (X)) 0 t5(Gn(X)).

Definition 4: (1) Suppose that A(gX): M(G,(X)) — X admits a homotopical
section o. Then the Hopf-invariant associated to (o, A, a) is:

[ 7(@) = (15(Gu(X)) 0 5% 0 Sat) - (5.0 @) € 7 (X(Ga(X))).

(2) Suppose there exists s: X — A\(G,(X)) such that A(g;X)os =~ ¢x(X). Then
the Hopf-invariant associated to (s, A, a) is:

Hyz(a) := (A(Gn(X)) 0 X 0 Xab) — (soa) € 7 (MGa(X))).

Remark: Consider 8: S* — S" a coH-map (for instance, a suspension) and
a: S™ — X. Directly from Definition 4 we have H, (a0 8) = Hoa(a) o 3 and
Ha,)\(a o 6) = Ho,)\(a) o ﬁ

The element H, y(a) € m(AM(Gn(X))) lifts in the fibre as an element
denoted by H, a(a) € m.(A(F,(X))} and there is no indeterminacy in this lifting
because A(F,,(X)) — A(Gn(X)) induces an injection between homotopy groups.
Notice that we are distinguishing between #, » and H, ,. We do this because
though H, , always determines H, x, tx(Gn(X))« 0 H, ;4 does not determine
tA(Gr(X))x 0 Hpia- This turns out to be one source of examples where the
invariants we study differ; cf. Corollary 2.

We consider the classical Hopf invariant of Berstein-Hilton [BH60] as a par-
ticular case of H, » for A = id and use, in this case, the notation H, (or H). If
there is a unique homotopy class of section we shorten the notation in H (or H).

The LS-category of the skeleton of a non-contractible CW-complex is always
less than or equal to the LS-category of the total space [Sta00]. This property
can be extended to the setting of Acat as follows:
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THEOREM 3: Let A+ S — S be a regular coaugmented functor preserving k-
equivalences for any k > 0. Let X be a (k — 1)-connected CW-complex and X (")
be its r-skeleton. We supposer > k, (k> 2 andn>1)or (k=1andn > 2).

For any section o of X(gX): M(Gn(X)) — X, n > 1, there exists a compat-
ible section o, of N(Gn(X)) — X, In other words the following diagram
commutes:

MG (X ™)) — = NG (X))

-

X)) ——m—X

As a consequence, if X is simply connected and cat(X) > 1 or X is connected
and cat(X) > 2, we have Acat(X (") < Acat(X), for any r > k.

We show now that the Hopf invariant characterizes in a certain way the growth
of the LS-category when a cell is attached to a CW-complex. The following
theorem generalizes results of [BH60], [Iwa98], [Sta00] and [Van98]:

THEOREM 4: Let A\: § — § be a regular coaugmented functor and X be a
connected space of associated Ganea fibration ¢X: G,(X) — X. Consider
a: ST — X. Denote by Y = X U, e"t! the space X with a cell attached
along o and by p: X — Y the canonical inclusion.

(1) If there is some homotopy section o of A(q)X) such that H, x(a) = 0 then
Acat(Y) < n.

(2) We supposen > 1 or X simply connected. If Apreserves (r+1)-equivalences,
r>1and dim X < r then: Acat(Y) < n if there exists a homotopy section o of
XgX) such that H, x(a) = 0.

(3) Suppose that A is a regular coaugmented functor equipped with a natural
transformation A2 = X o A — X\ whose composition with A(1y) is equal to the
identity X = A* — . If there exists s: X — M(Gn(X)) such that A(gX)os ~
12 (X) and H, y(a) = 0 then Meat(Y) < n.

The hypothesis required on A in the statements (2) and (3) are satisfied by the
functors Q", P*, Q, M = Sp™.

Suppose there exists a natural transformation £: Ay — A2 compatible with
the coaugmentations between two regular coaugmented functors. If o1 is a
homotopical section of A;(¢;X) we define a homotopical section of X;(gX) by
oy 1= L(Gn(X)) 0 o1 and we have H,, = L(Gn(X))oH] , . We may also

define a lifting s from oy and the Hopf invariant Hj, ), is obtained from H,, )
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by composition with A1 (G, (X)) = A1(Gn(X)). These considerations and Theo-
rem 4 give us directly a relationship between the different Hopf invariants asso-
ciated to our functors:

COROLLARY 2: Let X be a simply connected space of LS-category n with a
section 71 X — G,(X) to the Ganea fibration ¢X. Let a: S - X and Y =
X Uq e™*L. Denote by H.(a) € m.(Fo(X)) and H.(a) € 7. (Gn(X)) the Hopf
invariants associated to (7,a) and by Hur the Hurewicz homomorphism. Then
we have:

e XM, (a) = 0= Qlcat(Y) < n;
e YN (a) =0 = o'cat(Y) < n;

e Hur#.(a) =0= Mcat(Y) <n;
e Hur ) (a) =0=e(Y) < n.

Coming back to the general situation we will prove that Theorem 4 implies:

COROLLARY 3: Let A be a regular coaugmented functor and a: S — X. Then
Acat(X Uy e 1) < Acat(X) + 1.

The argument used in the proof of Corollary 3 does not work for A,cat. In
fact, by [KV00], there is an example X with e(X U, €"t1) = e(X) + 2.
We present now some particular results used in the proofs:

LEMMA 1: Consider the situation of Theorem 4 and let X(Gr(p)): M(Gn (X)) =
MGR(Y)) and M(Gr(p)): M(Grn(X)) = MG (Y)) be the maps induced by p: X —
Y.

(i) If X(gX) admits a homotopy section o we have:
X(Gn(p) 000 a = — (MGa(p)) o Hg \(a)) -

(ii) If s exists we have:

A(Gn(p)) o s0 o> —(A(Gn(p)) o Hs(a))

LEMMA 2: Let r > k > 1. Let B be a (k — 1)-connected CW-complex of
dimension < r. Consider the cofibration V;S"™ — B — C = BUjye™tl. Let
k>2or(k=1andn > 2). Then, for n > 1, the map B — C induces an
(r + 1)-equivalence F,,(B) — F,(C) between the fibres of Ganea fibrations.
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LEMMA 3: Let S"—*>B—>C =R Ugq €™t! be a cofibrationandp: Y — C
be a map such that w,41(p) is surjective. Let ¢: B — Y be a map such that
poa~xand po @ =~ p. Then there exists o: C — Y such that o o p ~ ¢ and
poo ~ide.

The end of this section is devoted to proofs beginning with the proofs of the
Lemmas.

Proof of Lemma 1: By definition we have:

X(Ga(p) 00 00 = N(Ga(p) 0 [~ (H) 5 (@) + 15(Gn(X)) 0 1¥ 0 S,
The required equality follows from

MGn(p) 0 t5(Gn(X)) 06X 0 Dot = ((Gr(Y)) 0 kY 0 ZQpo Tal ~ x.
The verification of (ii) is similar. 1

Proof of Lemma 2: Observe that the fibre F,,(B) (resp. F,,(C)) having the
homotopy type of the iterated join ***1QB (resp. *"*1QC) implies that it is
((n+1)k—2)-connected. With the assumptions on k and n, F,,(B) and F,,(C) are
simply connected. A homology argument shows that the induced map F, (B) —
F,(C) is an (nk + r — 1)-equivalence and thus an (r + 1)-equivalence. ]

Proof of Lemma 3: The map p induces a morphism between the following two
long exact sequences coming from the cofibration $" — B — C:

—— [$™ Y] — [C, Y] [B,Y]
L]
—[§™,Cl——[C. (] [B,C]

From ¢ o oo ~ * we deduce the existence of ): C — Y such that 1/ o p ~ ¢. The
elements po4 and ide of [C, C] satisfy poop ~ idop. By a theorem of D. Puppe
[Hil67, Theorem 15.4] there exists £’ € [S™!,C] such that (po )¢ ~ idc where
(po w)fl denotes the cooperation of &' on p o v induced by the cofibration.

By hypothesis there exists £ € [S™*!, Y] such that ¢’ >~ po€. Set o = ¢/¢. Then
we have poo = po (¥)¢ ~ (po1h)P¢ ~idc. 1

Proof of Theorem 3: Denote by i,: X — X and i.: X"~V - X the
canonical inclusions and by ¢ ,.: G,(X(™) — X the Ganea fibration. Let o
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be any section of A(¢,X). The map i, induces a morphism of fibrations between
g ,) and A(g¥) which is an r-equivalence between the bases and an (r + 1)-
equivalence between the fibres (by Lemma 2 and the hypothesis on A). Also the
Ganea fibrations split after looping. So with the homotopy long exact sequences
we deduce that A(i.) is an r-equivalence. Therefore there exists 7 such that in
the following diagram

— Alin) —

MG (X)) MGr(X))

X(qﬁf,r)l >F X(qi")l >U
X (r=1) ~ X(r) - X

i ir

Aiy) 0T =~ 004, and X(q,{r) ogoi. ~ 4. By Lemma 3 applied to the cofi-
bration VS™™! — X1 — X we can choose an element ¢ € [vS", X(")]
such that (A(¢X,) 0 7)¢ = id. Now, m.(A(¢X,)) being surjective, we can choose
£ € VST, NGn(X™))] with 7. (X(gX,))(€) = €. Hence,

MaX,) 058 ~ (MgX,) 07)¢ ~id.

We may homotope &° to a section o, of A(g ) such that A(ir)oo}0i, = goi,ofl.
o

(ir
We can therefore find 7" € [VS™, X(Gn(X))] with (A(i,) 0 6/)"" = o 0i,. From

X(qr)f) o A(iy) ool ZX(qf) 000,

we deduce that X(¢X) o %" acts trivially on M(gX) o A(i,) o 0. Then the el-
ement 7' 1= 7" — o o XgX) o € [VS",AN(F.(X))] satisfies (A(i,) oa;)nl ~
(A(ir) oa;)n” ~ g oi.. Let n € [VS",A(F,(X))] be an element which is
mapped to 7/ by the map induced by A(Fy, (X ™)) = M(Fn(X)); set o, := (a1)".
Then o, is still a section of X(g,) with A(ir) 0 0 ~ 0 0 i ]

Proof of Theorem 4: Suppose that A(¢X) admits a section o. By application of
Lemma 1 (i) we get a commutative diagram (up to sign):

MGr(X))
ST X — AGY
s R Gntoen (Gn(Y))
pl lnq:)

Y Y
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1) If H, , ~ * we apply Lemma 3 to construct a map o": ¥ — MGr(Y))
such that A(G,(p))oc ~ o' o p and Aq}) o o' =~ idy. By definition we have
Acat(Y) < n.

2) Let 0’1 ¥ — A(Gn(Y)) be a section of (g} ). By Theorem 3 there exists a
section o of A(gX) such that o’op =~ MG, (p))oo. From the diagram above we de-
duce immediately that X(Gn(p))o"}i; y =~ *. This implies that A(F,,(p))oH, x = *
by injectivity of 7. (A(F,,(Y))) = 7-(M(G,(Y))) and that H, y ~ % by Lemma 2
and the hypothesis on A.

3) Set & :=3(X)oa: " = A(X) and @ := soa: §" — A(G,(X)). Note that
AgX) o @ = & and, because of H, y(a) = 0, @ =~ t1(G,(X)) 0 k, o EaF. From
naturality of ¢y we have A(p) o & ~ * and we deduce from Lemma 1 (ii) that
A(Gr(p)) o@ ~ *. The universal property of pushouts and, for the right bottom
square, [Van00, Proposition 2.5] give a homotopy commutative diagram (without
the dashed arrow):

o

ST ‘X' X Ua €r+1 ————————] }"

R

S —E > MX) ——— A(X) Ug e+ ——— A\(Y)

“ X )T qT ‘5 TA(q,‘;)
14

ST ——> MGr(X)) — MG (X)) Ug e™tl —— NG, (Y))

where MG, (X)) = MGp(X)) Uz e™! — A(Gn(Y)) is homotopic to A(Gr(p))
and A(X) = MX) Uz et — A(Y) is homotopic to A(p).

From the hypothesis on A and Proposition 1 one has a homotopical section
3n to A(g)); a look at its construction gives 5, o & ~ @. Denote by 3, and gy
the maps induced by 3, and A(¢X) between the cofibres. The map ¢ = §, 03,
induced by A(g) 03, ~ id is a homotopy equivalence [Qui67, Section 1.3]. By
composing 5, with ¢~! we get a homotopical section &, of §,. The required
homotopy lifting of ¥ — A(Y") through A(g}) is the following composite:

X Ug et — MX) Uz et —= MG (X)) Ug et —= A(GR(Y)). B
Proof of Corollary 3: The triviality of the induced map F,(Y) — F,4 1 (Y)
implies the triviality of A(F(Y)) — A(Fn41(Y)) and the image of the Hopf
invariant H, x(a) in 7 (A(Fp4+1(Y"))) is zero. As in the beginning of the proof of
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Theorem 4 we construct a dashed arrow making commutative

X = MGn41(Y))
l 7 l,\(qy‘:ﬂ)
yi——y

In other words Acat(Y) <n+1. |

4.2. EXAMPLES. We come back to the chain of inequalities of Theorem 1 and
exhibit examples of spaces for which a strict inequality occurs (except for P™ and
Q™). For this we will apply Corollary 2.

Example 4: 'We use the notation and results of [Tod62, Proposition 13.9 page
179]. The composite 3 := a1(3) o a;(2p): S*P~3 — S — $3 is a generator of
Tap—3(S®) = Z,, such that £8 # * and £28 ~ x. Denote by w: S* — S3 v 52
the Whitehead bracket of the classes S and S and by v := wo £3: §%~2 —
5% — §3v 8% Set X = (53 Vv S?) U, 1. Then we claim Q'cat(X) =1 and
cat(X) = 2 (cf. also [Sta98] for a different proof of cat(X) = 2).

The Hopf invariant of v satisfies H(y) = H(w o £3) = H(w) o £3. Therefore
YH(y) ~ * and Q'cat(X) = 1 by Corollary 2. We are now reduced to proving
that H(v) is not trivial. Denote by f* the adjoint of a map f and observe that
H ()" = H(w)*® o B. The non-triviality of H(v) is a consequence of the following
lemma. It is certainly well known but we cannot find it in the literature.

LEMMA 4: Let i,j > 2. Let w;;: S9! — §*V S7 be the Whitehead bracket
of the canonical inclusions n¢: S* < S§%v S4, ni: $9 < S v §J. Denote by F; ;
the homotopy fibre of the first Ganea fibration associated to S* v S7. The Hopf
invariant associated to w; ; has for adjoint a map H(w; ;)*: S92 - QF; ;.

Then there exists a map p: QF;; — SV~ such that the adjoint of
poH(w; ;) is a map of degree £1: S+i—1 — giti-1,

Proof: By the Hilton—Milnor theorem [Whi78, page 515|:

QS*V §7) ~ QS  x Q87 x QS x -
Recall that w} ; is constructed using the commutator of §*”1 — Q8* — Q(S*vS7)
and S771 — Q89 — Q(S? Vv S79); the extension of wf,j: Siti=2 5 (S v §9) to

QXS*7-2 is the inclusion Q5+ ~1 — Q(S? v §7) in the above decomposition.
Note that there is one homotopy section of ¥Q(S*V$7) — S*VSJ up to homotopy.
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It follows that there is a map p: QF; ; — Q57 ~! with the adjoint of po H(w; ;)
a map of degree +1: Si+i—1 — Gi+i—1 1

Example 5: Let B: S* — S° such that 28 % x and £2"!'8 ~ x [Gra84,
Theorem 12] or [Sta00, Corollary 9.2]. Denote by w: $* — $3Vv .S? the Whitehead
bracket of the classes S® and S? and let v := woX3. Set X = (S3v S?)u, e**2.
The method used in Example 4 gives Q*"cat(X) = 1 and Q*"lcat(X) = 2.

The existence of 3: S® — S* such that X213 % x and £2"8 ~ * allows with
the same process the construction of a space X = (S® v $%) U, e**2 such that
Q% leat(X) =1 and Q" 2cat(X) = 2.

We remark that the examples X = Q,, p > 2, of N. Iwase [Iwa98] satisfy
2 = cat(X) = Q'cat(X) > Q%cat(X) = 1. As for X = Q5 of [Iwa98], it is such
that 2 = cat(X) > Q'cat(X) = 1.

Example 6: For any n > 1 we denote by X(n) a CW-complex which satisfies,
as in Example 5, Q*~lcat(X(n)) = 1, @ 2cat(X(n)) = 2 (by convention:
Q°at = cat). Set Y = V;,>1X(n) and observe that ¥ (resp. ¥ x S7) dominates
X (n) (resp. X(n) x S"). We deduce from Corollary 2 and from [Iwa97] that Y is
an infinite CW-complex such that Qcat(Y) = 1, cat(Y) = 2 and cat(Y x S") =
cat(Y) + 1 for any r > 1. This justifies the restriction to a finite complex in
Problem 2.

I d

Example 7: Denote by a1(3) € m2,(S%) a generator of the p-component and
by w: §* — S? v S3 the Whitehead bracket. We deduce from Lemma 4 that
QH(w o Tay(3)) # * and Hur H(w o Bay(3)) ~ . Therefore the space X =
(52 V 8%) Uyona, (3) €2P1? satisfies Qcat(X) = 2 and Mcat(X) = 1.

We address now the relation between ocat and Qcat.

Example 8: (The Lemaire-Sigrist example revisited.) Denote by w: S5 — CP?
the attaching map of the top cell of CP? and by v: $¢ — CP? v 52 the Whitehead
bracket of w and S2. Set Z = (CP? v S%)U,, e”. We claim that Qcat(Z) = 3 and
acat(Z) = olcat(Z) = e(Z) = 2.

Observe that the rationalized space Z; satisfies cat(Zp) = Qcat(Zg) = 3 and
ocat(Zy) = e(Zp) = 2, [LS81]. We deduce that 3 > cat(Z) > Qcat(Z) >
Qcat(Zo) =3.

Consider the first Ganea space G;(X) associated to X := CP? v §2. From
the decomposition Q(CP?) ~ St x Q(S5), from B. Gray's formula [Gra71], and
standard properties of ¥ and Q we see that G1(X) is a wedge of spheres. Among
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them we have S7, corresponding to a generator of 72(CP?) = Z, S° correspond-
ing to a generator of n5(CP?) = Z and S?. So we have a homotopy equivalence
G1(X) = Sf, v S*V 8V v;Sm.

Let «: SF) = Gi(X), v 5% - G1(X) and t5: S° — G1(X) be the canonical
inclusions. Let n: S — S? be the Hopf map. Then g¢;f o ¢; o7 is nullhomotopic
and hence ¢; o 7 is killed by the map G1(X) — G2(X). Hence we can find a
section X — G3(X). By G1(X) — G1(Z) the homotopy class of {i5, ] is mapped
to an element 7 of kernel(m.(q7)). Therefore ¥ will be killed by G1(X) — G2(Z).
Since Ty and T# are both nullhomotopic, we can find a section ©Z — £G2(Z),
ie., aleat(2) < 2.

Since 2 = o'cat(Zy) < o'cat(Z) we get that o'cat(Z) = 2.

Remark: We note that the notion of n-LS-fibration [ST97] does not allow an
efficient use of Hopf invariants. For instance, the fact that idgs: S — S% is a
1-LS-fibration implies that a 1-LS fibration cannot bring a characterization of
the category of S3 U, eF.

PROPOSITION 6: For any space with two cells Problem 2 has a positive answer.

Proof: Let X = S™ U, eP. We may assume cat(X) > 1. If cat(X) = 1, then
both statements are false. For cat(X) = 2 we refer to a result of [Iwa97):
if X = 8™ U, eP then cat(X x §") < cat(X) iff Z"H(p) = 0. 1

Appendix A. Dror Farjoun’s construction

In this paragraph we recall a construction from [DF96, Chapter 1.F.2]. Let
A: S = 8 be a regular coaugmented functor and 7: E — B in § a fibration. We
consider the simplex category Apg defined by:

— its objects are pairs (A[n],o), 0 € By;

— a morphism a: (A[n],¢) = (A[m],7) is a simplicial map a: Aln] — A[m]
such that f;oq = fo Where f,: A[n] — B is the characteristic map of o.

Denote by B: Ag — S the forgetful functor determined by (A[n],o) — Aln]
and let E: Ag — S be the functor defined by the following pullback:

E(A[n),0) —E

l,,
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The projection E(Aln], ) — A[n] defines a natural transformation £ — B. The
homotopy colimits (in S) of the functors B, Ao B, E and Ao E give a commutative
diagram

hocolim Ao E <— hocolim E — F

| Lk

hocolim Ao B <—— hocolim B— B

The functor X is constructed with a homotopy pullback—pushout operation: P is
the homotopy pullback (hpb) and X(E) the homotopy pushout (hpo) defined in
the following diagram:

hocolim E —— F

ey

hocolim Ao E ME)

e

hocolim \ o B<—— hocolim B—— B

This induces a factorization E — A(E) — B of . All diagrams

AE(A[m], 7)) —> ME(A[n], 0))

| |

A(A[m}, T) AA[n], o)

are homotopy pullbacks. Hence by [Pup74] this implies:

ProposiTION 7 ([DF96, Chapter 1, Theorem F.3]): Forb € B let F be the fibre
of m over b and F the homotopy fibre of A(E) — B over b. Then the induced
map F — F is naturally equivalent to the coaugmentation F — A\(F).

Appendix B. Unpointed version of 2"Y"

We now construct an unpointed version @™: S — S of Q"¥": S, — S, where S
(resp. S.) is the convenient category of compactly generated (resp. well pointed
compactly generated) spaces. For that we recall first the notion of unpointed
suspension:
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Definition 5: Let I =[0,1]. The unreduced suspension of Y € S is S(Y) =
(Y xI)/ ~, where (y,0) ~ (y',0) and (y,1) ~ (¢',1) for any y, ¥’ € Y. By induc-
tion we define the n-unreduced suspension of Y € S by In(Y) = Z¥»—1(Y).

We will number the coordinates from right to left; i.e., an element of iz(Y) is
an equivalence class denoted by [t,,...,¢1,y]. Observe that we have a canonical
map jn: 0I™ = (YY), (tn,...,t1) — [tn, ..., t1,y] (y arbitrary).

Definition 6: Given Y € S we define Q™ (Y') as the set of maps w: I"™ — fﬁ(y)
such that wigfn = jp. The map c: Y — Q™(Y), y = c(y), c(¥)(tn,.-.,t1) =
[tn,....t1,9] is a coaugmentation.

There are bonding maps b,,: Q" — Q"% compatible with the coaugmentations
given by b, (w)(tns1s- -+, t1) = [tns1, w(tn, ..., t1)] for w € Q*(Y).

Set Q(Y) := li_r)nQ"(Y).

Note that for X € S, the canonical map £"(X) — £7(X) (where £7(X) is the
reduced suspension) is a relative homeomorphism (iﬁ(x )s 57‘(*)) = (Z™M(X), )
and that 571(*) is contractible. Moreover, f;‘(X) — ¥"(X) induces a map
Q"(X) — Q"X (X).

PROPOSITION 8: (1) The canonical map Q"(X) — Q"Y"(X) is a homotopy
equivalence.

(2) ForY, Z € 8 there is a canonical map Q"(Y)x Z — Q™(Y x Z) compatible
with the coaugmentations.

(3) There is a natural transformation m: Q"Q™ — Q™ such that Q" together
with ¢ and m is a triple.

Proof: (1) Note that for all w € Q™(X) the restriction of w to the boundary 01"
is equal to the restriction to 8I" of I" — $7(x) — £7(X). Thus dividing dI"*!
in two halves along an equator 8I™ we obtain an element in Q"iﬁ(X ) by w on
one half and the composite I" — gl(*) - g‘(X ) on the other half. This gives
an equivalence Q"(X) — Q"En(X). Composing this map with Q"LA‘;‘(X ) —
Q"Y"(X) we obtain the announced equivalence. Note that it is compatible with
the bonding maps.

(2) We define 7: Q™(Y) x Z — Q™Y x Z) as follows. For w € Q™(Y)
write wtn, ..., t1) = [fny-.-21,8); then n(w, 2)(tny- - o t1) = [ns-. o b1, (5, 2))
This definition does not depend on the choice of the representative in the class
wW(tn,...,t1) (because wyps~ is the fixed canonical map Jn). One checks immedi-
ately that the map is compatible with the coaugmentations.
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(3) We define m: Q"Q™(Y) — Q™(Y) by the following device. Given w: I —
i)?lQ”(Y) write as above w(tn,...,t1) = [fn,...,t1,&] with & € Q*(Y). Then
set m(w)(tp,...,t1) = &(tn,...,t1). As above this definition does not depend
on the choice of representative [t,, ..., Zl,dz]. A calculation shows that we have
obtained a triple. |
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